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INTRODUCTION

 

At the beginning there was a continuum.
Man made it discrete !

Sampling and image acquisition

Multiresolution approaches

Coarse-to-fine and multigrid algorithms

Image pyramids and wavelets

Feature detection (edges)

Image registration

Tomography, etc. . .

Continuous/discrete algorithm design

Finding discrete solutions for problems formulated in the continuous domain

Interpolation

Spatial transformations, warping

Continuous domain: L2(Rd) �⇥ Discrete domain: ⇤2(Zd)
f(x), x ⇤ Rd f [k], k ⇤ Zd

real-world objects
images
sensor input

measurements
algorithms
image processing
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7.1 CONTINUOUS/DISCRETE REPRESENTATIONS

4

 Classical image interpolation
 Generalized interpolation
 Interpolation: filtering solution
 Interpolating basis functions
 Spatial transformations
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Classical image interpolation

5

Discrete image data �⇥ Continuous image model
f [k], k = (k1, . . . , kd) ⇤ Zd f(x), x = (x1, . . . , xd) ⇤ Rd

Interpolation condition

At the grid points x = k0: f [k0] =
⇥

k�Zp

f [k]�int(k0 � k)

Only possible ⇥f iff. �int(k) =

�
1, k = 0
0, otherwise

f [k]: pixel values at location k

�int(x): continuous-space interpolation function

�int(x� k): interpolation function translated to location k

Interpolation formula: f(x) =
X

k2Zd

f [k]'int(x� k)
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Examples of popular interpolation functions
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sinc(x)

-4 -2 0 2 4
-0.2

0.2
0.4
0.6
0.8
1

Interpolation condition: ⇥int(x)|x=k = �[k]

tri(x) = �1(x)

=

(
1� |x| if |x|  1

0 otherwise

<latexit sha1_base64="2LZXdG26sK54Pln3QRos8SbJwLE="></latexit>

sinc(x) =
sin(⇡x)

⇡x

<latexit sha1_base64="YNWMYdxLDG8HEJ/CTt4q707i4qE=">AAACE3icbVDLSgMxFM34rPU16tJNsAitizIjFd0IRTcuK9gHdErJpJk2NPMguSMtw/yDG3/FjQtF3Lpx59+YjrPQ1gMhh3PuJTnHjQRXYFlfxtLyyuraemGjuLm1vbNr7u23VBhLypo0FKHsuEQxwQPWBA6CdSLJiO8K1nbH1zO/fc+k4mFwB9OI9XwyDLjHKQEt9c0TB9gEEsUDmpYnFXyJHU8SmjhaKTsRx5NKmmR32jdLVtXKgBeJnZMSytHom5/OIKSxzwKggijVta0IegmRwKlgadGJFYsIHZMh62oaEJ+pXpJlSvGxVgbYC6U+AeBM/b2REF+pqe/qSZ/ASM17M/E/rxuDd9FLeBDFwHTo7CEvFhhCPCsID7hkFMRUE0Il13/FdER0J6BrLOoS7PnIi6R1WrVr1bPbWql+lddRQIfoCJWRjc5RHd2gBmoiih7QE3pBr8aj8Wy8Ge8/o0tGvnOA/sD4+AZl3Z3c</latexit>

tri(x) =
� 1(x)

!2
!1
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tri(x
) = �

1 (x)

!
2

!
1

0
1

2
3

!
0.2
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0.8
1

tri(x) = �1(x)

!2 !1 0 1 2 3
!0.2

0.2
0.4
0.6
0.8
1

<latexit sha1_base64="cItesnjfNepLtY+6VmrdU4aIIMs="></latexit>

Separable extension to higher dimensions:

'int(x) =
dY

i=1

'int(xi)
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Generalized image interpolation

7

Further acceleration

Faster interpolation formulas!

Generalized interpolation formula: f(x) =
�

k�Zd

c[k] �(x� k)

Separable basis functions: �(x) = �(x1) · �(x2) · · · �(xd)

... but one new difficulty: How to pre-compute the coefficients c[k] ?

Desired features for the interpolation kernel
Short (to minimize computations)

Simple expression (e.g., polynomial)

Smooth (to avoid model discontinuities)

Good approximation properties: reproduction of polynomials

Simple integer-shift-invariant structure

Simple expression (e.g., polynomial)

� selected freely (not interpolating and much shorter)
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Interpolation: filtering solution
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Digital filter
f [k] c[k] = (hint � f)[k]

Note: �(x) separable � hint[k] separable

Discrete convolution equation: f [k] = (b � c)[k]

Interpolation problem: Given the samples {f [k]}, find the coefficients {c[k]}

Interpolation condition: f(x)|x=k = f [k] =
�

k1�Zd

c[k1]�(k � k1)

with b[k] �= �(k) z�⇥ B(z) =
�

k⇥Zd

b[k]z�k

with Hint(z) =
1

B(z)
=

1�
k⇥Zd �(k)z�k

Inverse-filtering solution
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Example: cubic-spline interpolation
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1/6 1/6

4/6

Symmetric exponential (cf. Chap IP-3)� = �2 +
�

3 = �0.171573

Multidimensional interpolation

Separability � successive 1D filtering along the dimensions of the data

Cubic B-spline

⇥(x) = �3(x) =

�
⇤

⇥

2
3 �

1
2 |x|2(2� |x|), 0 ⇥ |x| < 1

1
6 (2� |x|)3, 1 ⇥ |x| < 2

0, otherwise

Discrete B-spline kernel: B(z) =
z + 4 + z�1

6

Interpolation filter

6
z + 4 + z�1

=
(1� �)2

(1� �z)(1� �z�1)
z⇥⇤ hint[k] =

�
1� �

1 + �

⇥
�|k|
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Exponential filtering: implementation

10

Cascade of first-order recursive filters

causal anti-causal

1
1� az�1

1
1� az

Exponential filter: Ha(z) =
Ca

(1� az�1)(1� az)

x[k] y1[k] y2[k]

Y1(z) =
X(z)

1� az�1
⇥ Y1(z) = X(z) + az�1Y1(z)

Recursive-filtering algorithm

1. Causal filtering: y1[k] = x[k] + ay1[k � 1], for (k = 0, . . . , N � 1)

2. Anti-causal filtering: y2[k] = y1[k] + ay2[k + 1], for (k = N � 1, . . . , 0)

3. Normalization: y[k] = Ca · y2[k]

REMINDER
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Cubic-spline coefficients in 2D

Geometric transformation

f(x, y) =
k1+n+1�

k=k1

l1+n+1�

l=l1

c[k, l] �n(x� l) �n(y � l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5

Geometric transformation

f(x, y) =
k1+n+1�

k=k1

l1+n+1�

l=l1

c[k, l] �n(x� l) �n(y � l)

f [k, l] c[k, l] (x, y)

Pixel values f [k, l]

B-spline coefficients c[k, l]

5

Digital filter
(recursive,  

   separable)



7-

One-to-one continuous/discrete representation

12

f(x) =
�

k�Zp

c[k]�(x� k) c[k]

f [k]

Expansion coefficients

Riesz-basis property

Continuously-defined signal

Discrete signal

Sampling: f(x)|x=k

Digital filtering

� b (FIR) � hint (IIR)
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Interpolating basis function

Finite-cost implementation of an infinite impulse response interpolator!

-5 -4 -3 -2 -1 1 2 3 4 5

1Interpolation basis function

�int(x) =
�

k�Z
hint[k] �(x� k)

Example: cubic-spline interpolant

Equivalent interpretation of generalized interpolation

f(x) =
�

k�Z
c[k]�(x� k) =

�

k�Z
(f ⇥ hint)[k])�(x� k)

=
�

k�Z
f [k] �int(x� k)
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Spatial transformation
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f(x0, y0) =
k1�

k=k0

l1�

l=l0

c[k, l]�(x0 � k)�(y0 � l)

�(x0 � k)

�(y0 � l)
(x0, y0)

k

l

One-to-one coordinate mapping T : Rd ⇥ Rd

x = (x1, . . . , xd) ⇥ � = T (x)
� = (�1, . . . , �d) ⇥ x = T�1(�)

(e.g., affine transformation = Ax + b)

Image transformation by re-sampling: fT (�0) = f
�
T�1{�0}⌃ ⇧⌅ ⌥

x0

⇥
=

⇤

k⇥Zd

c[k]⇥
�
x0 � k

⇥
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Image zooming

15

Piecewise constant Bilinear Cubic spline

**
⇤ ⇥� ⌅
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Interpolation benchmark
Cumulative rotation experiment: the best algorithm wins!

Bilinear Windowed-sinc Cubic spline
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Image-registration problem
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Basic ingredients of a registration algorithm

A metric for comparing images

A class of admissible transformations

A resampling/interpolation mechanism

An optimization procedure

Splines

Target: fT(x)Source: fS(x)

Find a spatial transformation: x⇥ g(x) such that fS(g(x)) � fT(x)
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High-quality rigid-body registration

18

Plugin for ImageJ

Registration as a non-linear least-squares estimation problem

min
A,x0

�
⇤

k

|fS (A(k � x0))� fT[k]|2
⇥

fS(x): source image (continuously-defined)

fT[k]: target image (discrete)

Proposed spline-based algorithm

Cubic-spline interpolation of fS(x)

Coarse-to-fine strategy
- cubic-spline pyramids

Marquardt-Levenberg optimizer

Consistent implementation
- least-squares approximation
- exact gradient
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MosaicJ: A stitching tool for microscopy 
User-friendly interface (within ImageJ)

Computational engine: TurboReg 



Before registration



7A-21After registration
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Before: Twenty tiles (636 x 512)

22
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After: One mosaic (3’332 x 1’957)

23

P. Thévenaz, M. Unser, Microscopy Research and Technique, 70(2), pp. 135-146, 2007
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7.2 POLYNOMIAL SPLINES REPRESENTATIONS

24

 Splines: definition
 Basic atoms: B-splines
 B-spline properties
 B-spline interpolation
 Why B-splines?
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Splines: Definition

1 2 3 4 5 6 7

1

2

3

4

1 2 3 4 5 6 7

1

2

3

4

The right framework for signal processing

Effective degrees of freedom per segment:
(n + 1) � n = 1

(polynomial coefficients) (constraints)

Cardinal splines = unit spacing and infinite number of knots

Definition: A function s(x) is a polynomial spline of degree n with knots
· · · < xk < xk+1 < · · · iff. it satisfies the following two properties:

Piecewise polynomial: s(x) is a polynomial of degree n
within each interval [xk, xk+1);

Higher-order continuity:
s(x), s(1)(x), · · · , s(n�1)(x) are continuous at the knots xk.
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B-spline basis functions

∗ ∗…

!2 !1 1 2

1

Fourier-domain formula: �̂n(⇥) =
�

sin(⇥/2)
⇥/2

⇥n+1

Centered B-spline of degree n

�0(x) =

�
1, |x| < 1

2

0, |x| > 1
2

�n(x) = (�0 ⇥ �0 ⇥ · · · ⇥ �0)⌅ ⇤⇥ ⇧
(n+1) times

(x)
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analog signal discrete signal
(B-spline coefficients)
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B-spline representation

Basis functions

2 4 6 8

0.2

0.4

0.6

0.8

1

Cubic spline (n=3)

1 2 3 4 5 6 7

1

2

3

4

Theorem (Schoenberg, 1946)
Every cardinal polynomial spline s(x) has a unique and stable representation
in terms of its B-spline expansion

s(x) =
�

k�Z
c[k] �n(x� k)

In modern terminology: {�n(x� k)}k�Z forms a Riesz basis
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Differential operators

28

Derivative

Df(x) =
df(x)

dx
D F⇥⇤ j⇤

Multiple differentiation

Dnf(x) =
dnf(x)

dxn
Dn F⇥⇤ (j⇤)n

Dn1Dn2f(x) = Dn1+n2f(x)

Integrator

D�1f(x) =
� x

�⇥
f(t) dt D�1 F⇥⇤ 1

j⇤
+ ⇥�(⇤)

Finite difference

�f(x) = f
�
x + 1

2

⇥
� f

�
x� 1

2

⇥
� F⇥⇤ ej�/2�e�j�/2

Higher-order finite difference

�nf(x) =
n⌥

k=0

⇧
n

k

⌃
(�1)kf

⇤
x� k +

n

2

⌅
�n F⇥⇤

⇤
ej�/2 � e�j�/2

⌅n

�n1�n2f(x) = �n1+n2f(x)
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B-splines and derivatives  
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�̂n(⇥) =
�

sin(⇥/2)
⇥/2

⇥n+1

=
�̂n+1(⇥)
D̂n+1(⇥)

Discrete-space operator

Continuous-space operator

Fourier transform of a B-spline revisited

�̂0(⇥) =
sin(⇥/2)

⇥/2
=

ej�/2 � e�j�/2

j⇥
=

�̂(⇥)
D̂(⇥)

Derivative operator: D =
d
dx

F⇥⇤ D̂(�) = j�

Finite difference operator: � F⇥⇤ �̂(�) = ej�/2 � e�j�/2 = j� +O(�3)

Explicit derivative formula

Dm�n(x) = �m�n�m(x)
F�⇥ D̂m(⇥)

 
�̂n+1(⇥)

D̂n+1(⇥)

!

| {z }
�̂n(⇥)

= �̂m(⇥)

 
�̂n+1�m(⇥)

D̂n+1�m(⇥)

!

| {z }
�̂n�m(⇥)
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Refresher: impulse response of n-fold integrator

30

One-sided power function: xn
+ =

�
xn, x � 0
0, x < 0

-2 -1 1 2

1

2

3

4

5

D
�(x)u(x)

D�1 u(x)

D�1�(x) = u(x)

D�2�(x) = (u ⇤ u)(x) =
Z x

�1
u(t) dt =

x+

1!

D�3�(x) = (u ⇤ u ⇤ u)(x) =
Z x

0
t dt =

x2
+

2!
...

...

D�(n+1)�(x) = (u ⇤ · · · ⇤ u)| {z }
(n+1) times

(x) =
Z x

0

tn�1

(n� 1)!
dt =

xn
+

n!
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Explicit space-domain B-spline formula

31

B-spline of degree 0: �0(x) = u
�
x + 1

2

⇥
� u

�
x� 1

2

⇥
= �u(x) = �D�1⇥(x)

Proof:

(one-sided power function)

Higher-order generalization

�n(x) =
�n+1xn

+

n!
=

1
n!

n+1⌅

k=0

�
n + 1

k

⇥
(�1)k

�
x� k +

n + 1
2

⇥n

+

where (x)n
+ =

⇤
xn, x � 0
0, x < 0

�n(x) = (�0 ⇥ �0 ⇥ · · · ⇥ �0)⇤ ⇥� ⌅
(n+1) times

(x) = (�u ⇥ · · · ⇥ �u)⇤ ⇥� ⌅
(n+1) times

(x)

= �n+1 (u ⇥ · · · ⇥ u)⇤ ⇥� ⌅
(n+1) times

(x) = �n+1D�(n+1)⇥(x) = �n+1 xn
+

n!

<latexit sha1_base64="ZELWIDlHwzSC0BizD0O2kwVuNCM=">AAAJPXiclVbdb9s2EFe7j3reV9o97oVYEiAtGkPy1mYrUKBAjCAF+tClS1sk8gJKOslEqI+SVGKP4H82YH/CnvcH7G3Y27C3bUdLdi0pGVwCsine8fc73h3vFBScSeW6v924+d77H3x4q/dR/+NPPv3s843bd17KvBQhHIc5z8XrgErgLINjxRSH14UAmgYcXgXn+1b+6gKEZHn2g5oVME5pkrGYhVTh0tkG2/JHwBUlox/1rmf8yL7sTO8SXyoangvg2g8pJwdG+zzPEg6xEiyZKCpEfmn8WNBQ+xOqSIWz4+cpJPSuqRZHy/ets41Nd+DOB+lOvHqy6dTj+dntWz/7UR6WKWQq5FTKU88t1FhToVjIwfT9UkKBRtIE9NwThmzjUkTiXOCTKTJfbejRVMpZGqBmStVEtmV28SrZaanib8eaZUWpIAsrorjkROXEupVETECo+IzQMER7S6rQjgaCRDdC9Hjw3XCsJ8AvQOEJBGRwGeZpSrNI+zFNGZ9FENOSK/SgjBfz/nZ/m8yjKQmqkqDkHJR8hOsYshiDPz+qTssk55HRIgmM9u67g70H913T0REwq3XcASpUD6qtGhPwEioatKRpJ6cBJpyClKGoArXahvii5KAtK0zN4t+0gC37+sC1tWtC4+HfCdo6az3ogGMc38UfqP4/0E0ANQFZBhIzCC+l0QQvj8S8gXt61x08xC1NL2Oack62Kpvkm5IK2Hq7Y2gpyHUc19LsvaVZ+lyxbHYtz9cLnlWWCt+ceuPF3HLd01fliWd9Yn9qTJuMc0yb+WTTuxq9RbAuxwpJFYwFRzvOLLGRtARE29AKrAzrGL+7tL6CJU3cgopV3PUstaGs8ci8BLwoIGRYjm0Ny3l1/1dZWHZk7C/xbQkLAn3UPh/LTpoaJ22NfcyMhXC/LTxaEXawT1aEHdhDxgMQaqGC1VAftnXgDRYqG5pl77nAai8YtY3H6Meo39zwLC8MelOk5Fkba7QUjdqip0vR07YoYpmqZVGH7QC7LgOxeoSDTqCDqd2P0YmqIJFpJ8XOWxrnHY3LlkbVRa1B27vzQV6AwtuZELzWpMD+QiT7CQiocICj70vAT4EsURO8+DBVlyzCxqa9b8LUNIQ2LbMI7KHduaxZNBafFlIJhLYIg2HLVkUDs1JJ8BYgDjoF+73X7u7dycvhwHswcL8fbj55VHf+nvOl85Wz43jOnvPEOXSeO8dO6Pzq/OX84/zb+6X3e++P3p+V6s0b9Z4vnMbo/f0fFh5iFQ==</latexit>

�D�1�(x)
F ! �̂(!)

D̂(!)-1/2 1/20
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B-spline properties

32

Explicit differentiation formulas

D1�n(x) = ��n�1(x) = �n�1

�
x +

1
2

⇥
� �n�1

�
x� 1

2

⇥

Dm�n(x) = �m�n�m(x)

Controlled smoothness: Hölder-continuous of order n

⇥ bounded derivative of order n

Symmetry, nonnegativity: �n(x) = �n(�x) and �n(x) � 0

Piecewise polynomial: �n(x) =
�n+1xn

+

n!

Compact support:
�
�n+1

2 , n+1
2

⇥

⇥ shortest polynomial spline of degree n
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Efficient B-spline interpolation

33

B-spline interpolation

bn
1 [k] = ⇥n(x)|x=k

z⇤⌅ Bn
1 (z) =

bn/2c�

k=�bn/2c

⇥n(k)z�k

f [k] =
�

k2Z
c[l] ⇥n(x� l)|x=k = (bn

1 ⇥ c) [k] ⇧ c[k] = (bn
1 )�1 ⇥ f [k]

(bn
1 )�1 [k] z⇤⌅ 6

z + 4 + z�1
=

(1� �)2

(1� �z)(1� �z�1)
1

1� �z�1

1
1� �z

7

B-spline interpolation

bn
1 [k] = ⇥n(x)|x=k

z⇤⌅ Bn
1 (z) =

bn/2c�

k=�bn/2c

⇥n(k)z�k

f [k] =
�

k2Z
c[l] ⇥n(x� l)|x=k = (bn

1 ⇥ c) [k] ⇧ c[k] = (bn
1 )�1 ⇥ f [k]

(bn
1 )�1 [k] z⇤⌅ 6

z + 4 + z�1
=

(1� �)2

(1� �z)(1� �z�1)
1

1� �z�1

1
1� �z

7

Cascade of symmetric exponential filters  (cf. Chap IP-3)

causal anti-causal

Efficient recursive solution

hn
int[k] z⇥⇤ 1

Bn
1 (z)

= c0

⇥n/2⇤⇤

i=1

�
��i

(1� �iz)(1� �iz�1)

⇥

Discrete B-spline kernels: bn
1 [k] = �n(x)

��
x=k

z�⇥ Bn
1 (z) =

⇥n/2⇤⇥

k=�⇥n/2⇤

�n[k]z�k

B-spline interpolation: filtering solution

f(x) =
�

l�Z
c[l]�n(x� l)

f [k] = (bn
1 ⇥ c) [k] ⇤ c[k] = (hn

int ⇥ f) [k]
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Limiting behavior (splines)

 Spline interpolator

Impulse response Frequency response
1

2

0.5 1 1.5 2

1

0.5

 Asymptotic property

Includes Shannon’s theory as a particular case !

(Aldroubi et al., Sig. Proc., 1992)

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the
degree goes to infinity:

lim
n��

�n
int(x) = sinc(x), lim

n��
�̂n

int(�) = rect
� �

2�

�
(in all Lp-norms)

� 2� 3� 4�

�n
int(x) F�� �̂n

int(�) =
�

sin(�/2)
�/2

�n+1

Hn
int(e

j�)
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Splines: variational properties 

36

[Ahlberg-Nilson, 1964]

Spline [American Heritage Dictionary]

- “A flexible piece of wood, hard rubber,
or metal used in drawing curves.”

- “A wooden or metal strip; a slat.”

Mathematical arguments

First integral equation: ⌅f ⇤ Wm
2 , ⇧Dmf⇧2L2

= ⇧Dmsint⇧2L2
+ ⇧Dm(f � sint)⇧2L2

f : any function that is m times differentiable (L2-sense)

sint: spline interpolant of odd degree n = 2m� 1 such that f [k] = sint(k)

Optimal interpolant

f(x) = sint(x) ⇥
⇥ +⇥

�⇥

���f (m)(x)
���
2

dx minimum

⇥ minimum-curvature property of cubic spline (m = 2)
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Splines unify multiple perspectives

37
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Spline-based gradient operator

38

!2 !1 1 2

!2
!1.5
!1
!0.5

0.5
1

!2 !1 1 2

0.2

0.4

0.6

0.8

1

Example: cubic B-spline

QUESTION: How to compute �f(x, y) =
�
fx(x, y), fy(x, y)

⇥
?

Derivative kernels: dn
1 [k] = ��n�1(k)

ANSWER: Exact computation using spline interpolation model: f(x) =
�

k�Zd

c[k]�(x� k)

Spline model: f(x) =
�

l⇥Z
c[l]�n(x� l)

(1D formulation since both B-splines and derivative operators are separable)

Differentiation:

fx(x) = Df(x) =
�

l⇥Z
c[l] D�n(x� l)

=
�

l⇥Z
c[l]��n�1(x� l)

Discretization:

fx(k) =
�

l⇥Z
c[l]��n�1(k � l) = (c ⇥ dn

1 )[k]

= (f ⇥ hn
int ⇥ dn

1 ) [k]
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Differentiation filters

39

j�

n = 3
n = 2

Comparison of differentiation operators

First derivative Second derivative

Generic

⇤

k⇥Z
��n�1(k)z�k

Bn
1 (z)

⇤

k⇥Z
�2�n�2(k)z�k

Bn
1 (z)

n = 1 (z � 1) N/A

n = 2
�

8
z + 6 + z�1

⇥ �
z � z�1

2

⇥ �
8

z + 6 + z�1

⇥
(z � 2 + z�1)

n = 3
�

6
z + 4 + z�1

⇥ �
z � z�1

2

⇥ �
6

z + 4 + z�1

⇥
(z � 2 + z�1)

Prewitt
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Example: Cubic-spline image differentials (n=3)

Differential
mask

2D filtering
(separable)

 Convolution-based implementation

c[k, l]

�p+q

�xp�yq
f(k, l)

f(k, l)

�p+q

�xp�yq
�(x, y)

����
x=k,y=l

�2

�x2
:

1
6

�

��
1 �2 1
4 �8 4
1 �2 1

�

��
�2

�x�y
:

1
2 · 2

�

��
1 0 �1
0 0 0
�1 0 1

�

��

�2

�y2
:

1
6

�

��
1 4 1
�2 �8 �2

1 4 1

�

��

�2

�x2
+

�2

�y2
:

1
3

�

��
1 1 1
1 �8 1
1 1 1

�

��

@

@y
:

1
6 · 2

2

64
�1 �4 �1

0 0 0
1 4 1

3

75

�

�x
:

1
6 · 2

�

��
�1 0 1
�4 0 4
�1 0 1

�

��

Laplacian

Gradient masksHessian masks
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Why B-splines ?

41

Symmetry; compact support; explicit piecewise-polynomial form; positivity

Efficient interpolation algorithms (recursive filtering)

Well-suited for explicit computation of differential operators
Differentiation ⇥ degree reduction & finite differences

Explicit control of image smoothness

Generality: transition from piecewise-constant (n = 0) to bandlimited model (n� +⇤)

Shortest functions that reproduce polynomials of degree n:

⇤am[k], xm =
X

k�Z
am[k]�n(x� k), (m = 0, . . . , n)

In particular:
X

k�Z
�n(x� k) = 1 (partition of unity)

Good approximation power

⇥ Best interpolation quality for a given computational budget!
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7.3 FROM SPLINES TO WAVELETS

42

 Multiresolution: motivation
 Notation and conventions
 Haar transform revisited
 Image pyramids
 Error (or Laplacian) pyramid
 From pyramids to wavelets
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Multiresolution: motivation

43

Why should one be stuck with a fixed-resolution image format?

Multiscale processing

Adapting resolution: coarse-to-fine or multigrid iteration strategies

Speed: less computation + faster convergence

Robustness

Inspired by the human visual system

Old idea (70’s, early 80’s) [Rosenfeld, Burt & Adelson]

� Multiscale implementation of most iterative IP algorithms

Multiresolution decomposition of images

Compact representation ) Wavelet transform (powerful tool for image processing)

Coding

Denoising

Feature extraction (contours, textures)

Enhancement
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Notation and conventions

44

a = 2

2 4

a = 1

1 2 3 4

Level 0:

Level 1:

Basic signal space

V0 =

⇤
s(x) =

⇧

k�Z
c[k]�(x� k), c ⇧ l2

⌅

Fine-to-coarse sequence of subspaces

V0 ⇤ V1 ⇤ . . . ⇤ Vi

Vi =

⇤
si(x) =

⇧

k�Z
ci[k]�

�
x� 2ik

2i

⇥
, ci ⇧ ⌃2

⌅

Basis functions at resolution a = 2i

�i,k = �(x/2i � k)

Scale index i ⌅ dilation by a = 2i (powers of two!)

Translation index k ⌅ shift by b = 2i · k
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Wavelets: Haar transform revisited

45

s0(x)

s2(x)

s1(x)

s3(x)

Signal representation

s0(x) =
�

k�Z
c[k]�(x� k)

Scaling function

�(x)

Multiscale signal representation

si(x) =
⇤

k�Z
ci[k]�i,k(x)

Multiscale basis functions

�i,k(x) = �

�
x� 2ik

2i

⇥
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+

-

Wavelets: Haar transform revisited

46

+

-

ri(x) = si−1(x) − si(x)

+

-

Wavelet:
�(x)
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Wavelets: Haar transform revisited

+

+

+

47

Haar revisited

r1(x) =
�

k

d1[k]�1,k

r2(x) =
�

k

d2[k]�2,k

r3(x) =
�

k

d3[k]�3,k

s3(x) =
�

k

c3[k]⇥3,k

�(x) s(x) =
�

k

c[k]⇥(x� k)

1

Haar revisited

r1(x) =
�

k

d1[k]�1,k

r2(x) =
�

k

d2[k]�2,k

r3(x) =
�

k

d3[k]�3,k

s3(x) =
�

k

c3[k]⇥3,k

�(x) s(x) =
�

k

c[k]⇥(x� k)

1

Haar revisited

r1(x) =
�

k

d1[k]�1,k

r2(x) =
�

k

d2[k]�2,k

r3(x) =
�

k

d3[k]�3,k

s3(x) =
�

k

c3[k]⇥3,k

�(x) s(x) =
�

k

c[k]⇥(x� k)

1

Haar revisited

r1(x) =
�

k

d1[k]�1,k

r2(x) =
�

k

d2[k]�2,k

r3(x) =
�

k

d3[k]�3,k

s3(x) =
�

k

c3[k]⇥3,k

�(x) s(x) =
�

k

c[k]⇥(x� k)

1

=

Haar revisited

r1(x) =
�

k

d1[k]�1,k

r2(x) =
�

k

d2[k]�2,k

r3(x) =
�

k

d3[k]�3,k

s3(x) =
�

k

c3[k]⇥3,k

�(x) s(x) =
�

k

c[k]⇥(x� k)

1

Wavelet:
�(x)
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Basic ingredients

48

Generic representation: si =
�

k ci[k]⇥i,k

⇧ vector space Vi (integer shift-invariant)

Two-scale relation ⇧ sequence of nested subspaces

L2(R) · · · ⇤ V0 ⇤ V1 ⇤ · · · ⇤ Vi ⇤ · · · ⇤ {0}

Sequence of minimum-error approximations: s0 ⌅ s1 · · ·⌅ si

⇧ si is the orthogonal projection of s0 onto Vi

Decoupling between error and approximation

⇧ orthogonality of the residual spaces (i.e., ⌥k ⌃ Z, ⌦⇥(·),�(·� k)↵ = 0)

Wavelet decomposition: compact representation of the residues

ri = si�1 � si =
⇥

k⇥Z
di[k]�i,k ⌃ Wi
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m-scale relation
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1 1 1 1 1

1/2 1/2

1

Causal B-spline of degree n

�n
+(x) = �n(x� n+1

2 )

B-spline dilated by an integer factor m

�n
+(x/m) =

⇤

k⇥Z
hn

m[k]�n
+(x� k) with Hn

m(z) =
1

mn

�
m�1⇤

k=0

z�k

⇥n+1

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

(1, 1) � (1, 1) = (1, 2, 1)

Example 2: piecewise-linear splines (m = 2, n = 1)

H1
2 (z) =

1
2
(z + 2 + z�1)

Example 1: Piecewise-constant case (n = 0, m)

H0
m(z) = 1 + z�1 + · · · + z�(m�1) (moving-sum filter) m
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Image pyramids

50

ci�1[k]
� 2

ci[k]

Rescaled basis function: ⇥2i(x) �=
d⇤

k=1

�n
�xk

2i

⇥

h̃[k]

Repeated, separable application of REDUCE operator

Successive approximations at dyadic scales

Vi =

�
⇧

⇤si(x) =
⌥

k�Zd

ci[k]�2i(x� 2ik) : ci[k] ⇥ ⇤2(Zd)

⇥
⌃

⌅

Optimal prefilter for minimum L2-norm approximation

h̃: separable, uniquely specified given the scaling function �(x)

Haar: 2 point average; otherwise typically IIR
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Error (or Laplacian) pyramid
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� 2 � 2 h[k]

REDUCE EXPAND

h̃[k]

Least-squares pyramid Error pyramid
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And the connection with wavelets

52

S.G. Mallat, "A theory of multiresolution signal decomposition: the wavelet 
representation," IEEE Trans. Pattern Anal. Machine Intell., 11 (7), pp. 674-693, 1989

= +

=

⇔

and iterate.... you get the wavelet transform:
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2D basis functions and Haar expansion

53

Expansion coefficients

Tensor-product basis functions  
x x

y

y

f(x, y) =
�

i,k

wi,k �i,k(x, y)
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aaaa

= +

x(k)

x(k+1)

x(k)+ x(k +1)
2

x(k)− x(k +1)
2

Haar: filterbank formulation

54

Basic principle

Perfect reconstruction filterbank

Tree-structured filterbank algorithm

Lowpass filter: H(z) =
1⇥
2
(1 + z�1)

Highpass filter: G(z) =
1⇥
2
(1� z�1)

� 2

� 2� 2

� 2 H(z)

G(z)

H(z�1)

G(z�1)

H(z)

sums differences

x[k] + x[k + 1]
2

x[k]� x[k + 1]
2

x[k] x[k + 1]
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7.4 SUMMARY
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A continuous/discrete image representation involves shifted basis functions �(x � k)
centered on the pixels. There is exactly one coefficient c[k] per pixel location.

The generating function �(x) may—or may not—have the interpolation property; in the
latter case, image interpolation involves a digital prefiltering step.

Interpolation is required for performing geometric transformations such as rotation, scal-
ing or warping.

The B-splines are a very useful family of generating functions. They are easy to manipu-
late and have many optimal properties (short support, etc...).

A multiscale image representation (or pyramid) is a series of fine-to-coarse approxima-
tions using basis functions of increasing sizes (dyadic scale progression).

The pyramid is constructed simply by iterative lowpass filtering and down-sampling.

The residues in a LS pyramid are orthogonal to the next coarser image approximation.
They can be represented concisely using wavelets (one-to-one representation).
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