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I N T R O D U CTI O N At the beginning there was a continuum.

Man made it discrete |

Continuous domain: Ly (R?) oo Discrete domain: £5(Z%)
f(x), £ € R? flk], k € 74
real-world objects measurements
images algorithms

sensor input image processing

m Sampling and image acquisition

m Continuous/discrete algorithm design
Finding discrete solutions for problems formulated in the continuous domain
Interpolation Feature detection (edges)
Spatial transformations, warping Image registration

_ _ Tomography, etc. ..
m Multiresolution approaches

Coarse-to-fine and multigrid algorithms

Image pyramids and wavelets
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7.1 CONTINUOUS/DISCRETE REPRESENTATIONS

= Classical image interpolation
= (Generalized interpolation

= |nterpolation: filtering solution
= |nterpolating basis functions
= Spatial transformations
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Classical image interpolation

Discrete image data — Continuous image model
flk], k= (ki,...,kq) € Z° f(x), © = (z1,...,24) € R?

m Interpolation formula:  f(x) = Z flk] ot (x — k)

kezd

f|k]: pixel values at location k
¢int () continuous-space interpolation function

¢int (€ — k): interpolation function translated to location k

m Interpolation condition

At the grid points @ = ko:  f[ko] = Y f[K]@int(ko — k)
kezp

1, k=0

Only possible V f iff. Pint (k) = { 0. otherwise
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Examples of popular interpolation functions

Interpolation condition:  int ()|, = 0|k

1

i 1 .
gz | 0s | tri(z) = 8 ()
04 0.6
02| 0.4}
0.2}
~0.2 el 2 0 1 > 3
. SIN( 7w )
sinc(x) = (72) tri(z) = ' ()
T
11—z if |z <1
o otherwise

Separable extension to higher dimensions:

d
SOint(CB) — H QOint(sz')

NN

“:XUD\




Generalized image interpolation

m Desired features for the interpolation kernel

= Short (to minimize computations)
= Simple expression (e.g., polynomial)
= Smooth (to avoid model discontinuities)

= Good approximation properties: reproduction of polynomials

m Generalized interpolation formula:  f(x) = Z clk] o(x — k)

: : et : kezd
= Simple integer-shift-invariant structure

= Simple expression (e.g., polynomial)

=  selected freely (not interpolating and much shorter)

:> Faster interpolation formulas!
... but one new difficulty: How to pre-compute the coefficients c|k] ?

m Separable basis functions: ¢(x) = p(x1) - p(x2) - - p(xq)

> Further acceleration
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Interpolation: filtering solution

Interpolation problem: Given the samples { f|k]|}, find the coefficients {c|k]}

m Interpolation condition: f(x)|z—r = f|k] = Z clki]p(k — kq)

k1 ez

E> Discrete convolution equation: f|k| = (b * c)[k]

with b[k] = (k) < B(z)= » blk]z*

m Inverse-filtering solution

f[ki] C[k] = (hint * f)[k] with Hint (Z) =

— Digital filter ———

Note: ¢(x) separable = hy,i[k] separable
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Example: cubic-spline interpolation

m Cubic B-spline

4/6
5= slelf(2—1z)), 0< |zl <1
plr) = (x) =1 §2—Ia))? 1< Ja| <2 16 .~ N 1/
0, therwi 4 A N
otherwise e T | T ~~~~~ .
_ . z4+44 271
m Discrete B-spline kernel: B(z) = ;
m Interpolation filter
6 1 —a)? . 1—
= 1-0) hing[k] = = alt
z+44+271 (1 —az)(l—az™1) 1+«
a=—-2++3=-0.171573 Symmetric exponential (cf. Chap IP-3)

m Multidimensional interpolation

Separability =- successive 1D filtering along the dimensions of the data
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Cl
(1 —az=1)(1 —az)

Exponential filtering: implementation QGM//VD
€A

m Exponential filter: H,(z) =

Cascade of first-order recursive filters

x[k] 1 y1[K] 1 y2 (K]
g 1—az1 1—az
causal anti-causal
X(z
Yi(z2) = T ELZ)_l = Yi(2) = X(2) +az" 'Y (2)

m Recursive-filtering algorithm

1. Causalfiltering:  y1 k] = z[k] + a1 [k — 1], for (k=0,...,N —1)
2. Anti-causal filtering:  yalk] = y1 k] + ay2lk + 1], for(k=N—1,...,0)

3. Normalization:  ylk] = C, - y2 K]

Unser: Image processing 3-10



Cubic-spline coefficients in 2D

Digital filter
(recursive, —_
separable)

-
——

NN

Pixel values f |k, ] | B-spline coefficients c|k, ]
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One-to-one continuous/discrete representation

Continuously-defined signal

[f(w)

Expansion coefficients

Riesz-basis property

« b (FIR)

Sampling: f(x)|z=k

Digital filtering

* hint (”R)

Discrete signal
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Interpolating basis function

m Equivalent interpretation of generalized interpolation

fx) =) clklp(@—k) = > (f*hm)K) ez — k)

keZ keZ

m Interpolation basis function

pne(@) = 3 hint[H] p(a — )

keZ

Example: cubic-spline interpolant

Finite-cost implementation of an infinite impulse response interpolator!
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Spatial transformation

= One-to-one coordinate mapping 7" : R — R4

x=(r1,...,xq) — E=T(x)
£=(&,....6a) — z=T71(§)

(e.g., affine transformation = Ax + b)

= Image transformation by re-sampling: fr(&,) = f(T~'{&}) = Z clklp(zo — k)

d
20 kecZ

o(zo — k)

©(yo — 1)
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Image zooming

Piecewise constant Bilinear

7-15



Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins!

Bilinear Windowed-sinc Cubic spline
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Image-registration problem

Source: fs(x) :

Find a spatial transformation:  — g(x) suchthat fg (a:)) ~ fr(x)

m Basic ingredients of a registration algorithm

= A metric for comparing images
= A class of admissible transformations )
Splines

= A resampling/interpolation mechanism

= An optimization procedure
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High-quality rigid-body registration

m Registration as a non-linear least-squares estimation problem

fs(x): source image (continuously-defined)

fr|k]: target image (discrete)

m Proposed spline-based algorithm

= Cubic-spline interpolation of fs(x)

= Coarse-to-fine strategy

- cubic-spline pyramids
= Marquardt-Levenberg optimizer
= Consistent implementation

- least-squares approximation
- exact gradient

min {Z | fs (A(k — z0)) — fT[k]l2}

Plugin for ImageJ

e 0 TurboReg

Source: 7SOUTC€ image ﬂ R G B @ K

Target:  Target image F] R G B Mk

O Translation ® Rigid Body O Scaled Rotation O Affine O Bilinear

£ P\ & p | —
Landmarks: [ Load... ) { SaveNow... | [_!Save on Exit
L e
Quality: () Fast ® Accurate
r'd N £ N\ £ - Y
. Cancel ) [ Manual } { Automatic ) Batch

’ Credits... \
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MosaicJ: A stitching tool for microscopy

User-friendly interface (within ImagedJ)

i Image) File m_p_t_:jecg_ Scale Help

en0on . Select All $A
Deselect #:D
Stow H*T
Forget FBX

Nudge Right 38—
Nudge Up Rl
Nudge Left 38—

Nudge Down 3.
———

Computational engine: TurboReg
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Before registration



After registration



Before: Twenty tiles (636 x 512
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After: One mosaic (3’332 x 1’957

P. Thévenaz, M. Unser, Microscopy Research and Technique, 70(2), pp. 135-146, 2007
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7.2 POLYNOMIAL SPLINES‘REPRESENTATIONS
= Splines: definition

= Basic atoms: B-splines
= B-spline properties

I a0
Ve
—— Jj:» X

> !
P |
& v =
» o

5 < -

= B-spline interpolation

= Why B-splines?
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Splines: Definition

Definition: A function s(x) is a polynomial spline of degree n with knots
e <z < xpgq < - -- iff. it satisfies the following two properties:

Piecewise polynomial: s(x) is a polynomial of degree n
within each interval [y, Tg11);

Higher-order continuity: i
s(z), s (x), -, 5"V (z) are continuous at the knots . e ey e

m Effective degrees of freedom per segment:
(n+1) — n = 1 y

(polynomial coefficients) (constraints) "2 3 4 5 6 7

m Cardinal splines = unit spacing and infinite number of knots

The right framework for signal processing
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B-spline basis functions

m Centered B-spline of degree n

50(:6):{ Lol

0, l|z|>3

G J/

Fh(w) = (8 %2 )@ — N

(n+1) times

] o]

sin(w/2) ) e

= Fourier-domain formula: " (w) = ( /2
w
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B-spline representation

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline s(x) has a unique and stable representation
In terms of its B-spline expansion

E C ﬁn :U— ) "l Basis functions

keZ \

discrete signal

analog signal (B-spline coefficients)

4 Cubic spline (n=3)

N

In modern terminology: {6 (z — k) } ez forms a Riesz basis
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Differential operators

m Derivative
Df(z) = 2 p L
m Multiple differentiation
d™ f(x n F - \n
D" f(r) = T D L ()
x
D" f(x) — Dnratn2 f(x)
m Integrator
T 1
D! f(z) :/ F(t)de D-1 L. " + 7o (w)
m Finite difference
Af(x)=f(r+3)—f(r—3) INPE I A7 S %
m Higher-order finite difference
A"f(z) = Z (Z) (1) f (a: —k+ g) Ar (ejw/Q — €_jw/2>

k=0

A™MA f () = AMn2 £ () N
7-



B-splines and derivatives

d F

Derivative operator: D= w D(w) = jw
X
Finite difference operator: A T Aw) = 92 — eTIW/2 = i 4+ O(w?)

m Fourier transform of a B-spline revisited

0 _ osin(w/2) eIw/2 _ og—iw/2 B A(w)
f(w) = 02 o = Do)

Discrete-space operator

&

) - () - S

Continuous-space operator

m Explicit derivative formula

A An+1 w A Antl-m w
D™FM(z) = A"V M (z) <Ts D™ (w) (% ( )> — A™(w) (% E ;)
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Refresher: impulse response of n-fold integrator

u(x) D o(x) . p-! u(x)
D™ '5(z) = wu(z)

D™%§(z) = (u*u)(w)Z/_x “(t)dt:%

T 332

D 5%6(x) = (u*u*u)(w):/ tdt:Z—J'r

O o
D5 = (ursu)w) = [ L=
——— o (n—1)! n!

(n+1) times
One-sided power function: z} = v
0, x<0 -

- N} w IS 5
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Explicit space-domain B-spline formula

= B-spline of degree 0:  3°(z) :- u(z—3) = Au(z) = AD14()
_ [T | D () L AW

12 0 12 (w

U

m Higher-order generalization
Antign i )i n+1\"
() = — — —k
B (x) = n! n'z< > (m + 2 >+

> . .
where (z)} = { Z)E ’ i — 0 (one-sided power function)

-2 -1 1 2

Proof: (" (z) = Sﬂo % B % - % Bol(x) = SAu koo ok Aul(:t)

-~

(n+1) times (n+1) times

n n —(n n $
= A" (ux--xu)(z) = AMHDTMHG(g) = A+1n+'

~~

(n+1) times
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B-spline properties

m Symmetry, nonnegativity: " (x) = 6" (—x) and ["(z) >0

An—l—lxn
= Piecewise polynomial: ("(z) = +

n!

= Compact support: |[—24E, ntd]

=- shortest polynomial spline of degree n

m Explicit differentiation formulas
1 1
Dlﬁn(ﬂi) _ Aﬁn_1<$) _ 6n—1 <£C—|- 5) _6n—1 <33 . 5)

m Controlled smoothness: Holder-continuous of order n
= bounded derivative of order n
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Efficient B-spline interpolation

z

m Discrete B-spline kernels: b7 [k] = 5n($)’x:k —

m B-spline interpolation: filtering solution

f(x) =) )™ (x—1)

I€Z
flkl = (b xc) [k] = clk] = (hi}e * [) [K]
m Efficient recursive solution

RM

By'(2)

e[kl — B?l(z) — 0 1:[ ((1 — aiz)_(fi— aiz_l))

[n/2]

> Bk

k=—|n/2]|

Cascade of symmetric exponential filters (cf. Chap IP-3)

1 1
P> >
1 —az 1 1 — oz
causal anti-causal
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TABLE I :
TRANSFER FUNCTIONS AND POLES OF DIRECT B-SPLINE FILTERS FoR 1 = 0 10 7

Direct B-Spline Fiiter: B/ (z) ' Co Poles: {lz| < l.i=1," -+, n}
1 1 -
1 1 -
8
— 8 :l = _3 + 2\/:2-
Z+ 6+ 7 = —0.171573
6
— 6 L= -2+ NE)
i+ 4+ 2 ~ —0.267949
384 384 = —0.361341
2+ 767 + 230 + 162 ' + 2 ° o = —0.0137254
120 120 - = 0.430575
22+ 267 + 66 + 267 + 777 :i - —0.0430963
46080 46080 — —~0.488295
23+ 7227° + 105437 + 23548 + 10543z + 722272 + 73 o 00816793
o = —0.00141415
5040 5040 = —0.53528
2° + 12022 + 1191z + 2416 + 1191z ' + 12072 + 7 = —0.122555
2y = —0.00914869
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Limiting behavior (splines)

= Spline interpolator

1 re
Impulse response Frequency response 2
1
. +1
F . sin(w/2)\" -
) o )= (T e
s 2T 3T 4

= Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the
degree goes to infinity:

lim ¢, () =sinc(x), lim @l (w) = rect (i) (in all L,-norms)

(Aldroubi et al., Sig. Proc., 1992)

Includes Shannon’s theory as a particular case !
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Splines: variational properties

m Spline [American Heritage Dictionary]

- “A flexible piece of wood, hard rubber,
or metal used in drawing curves.”

- “A wooden or metal strip; a slat.”

m Mathematical arguments

= Firstintegral equation: Vf € WJ", ||Dmf||f;2 = ||Dm31nt||i2 + |[ID™(f — Sint)||?32

f: any function that is m times differentiable (L2-sense)

sint: Spline interpolant of odd degree n = 2m — 1 such that f[k] = sint (k)
= Optimal interpolant [Ahlberg-Nilson, 1964]

F@) = si(z) = /_ +Oo(f<m>(x)f dz  minimum

= minimum-curvature property of cubic spline (m = 2)
7-36



Splines unify multiple perspectives

‘QM o /L
ﬂqﬂ\:@m) fl<-4)
ﬁ A
Sy ﬂ%@:%‘u‘m £(x| :gm) tr (MV) /
f)= T 0(k) furclx-k) Fle)| =2 f(4) redfx-4)
Vdh ] 6y
(D7
- (D7 prove o
— X9t (

().M,o(t AN A/\Nw\dl’l/ub _
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Spline-based gradient operator

QUESTION: How to compute V f(z,y) = (fu(2,y), fy (2, y))?

ANSWER: Exact computation using spline interpolation model: f(x) = Z clklo(x — k)
kezd
= Spline model: f(z) => c[l]3"(z - 1)
IEZ
(1D formulation since both B-splines and derivative operators are separable)

= Differentiation: = Derivative kernels: d}[k] = Ap" (k)
fo(w) = Df(z) = > clIDF"(z—1) |

0.8

leZ .
= > Az - 1) / \
leZ

= Discretization: 2 - 1 2
Example: cubic B-spline

(k) = ] AL HE—=1) = (cxd})[k 1
fz(K) ZEZZHB (k—=1) = ( )] T

2 B —o.ST ;1 2
= (f * hiye x dy) K] e
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Differentiation filters

First derivative Second derivative
ZAﬁn_l(k)Z_k ZAQﬂn_Q(k)Z_k
. keZ keZ
Generic
B7(z) By (z)
n=1 (z—1) N/A

8 z—2z1 8
=2 — 24z
" <z+6+z—1)< > ) <z+6+z—1)(z )
6 z—z 1 6
— —9 —1
n=3 (z+4+z1)( 2 ) (z+4+z1)(z )

m Comparison of differentiation operators

Jw

Prewitt

0.1 0.2 0.3 0.4 0.5 7.39



Example: Cubic-spline image differentials (n=3)

B Convolution-based implementation

= Hessian masks

5 1 -2 1
1 -2 1

opta

k,l
clkl owrayi! "
2D filtering Differential
(separable) ' mask
Pt (z,9) = Laplacian
T,y
OxP Oy ooyl e 2 1 11
o2 Tapt 3|t 81
1 11
= Gradient masks
52 | 1 0 -1 5 L7t ol
axﬁy:.§f§ vou0 or 6-2 v
-1 0 1 -1 0 1
1 4 1 -1 -4 -1
0? 1 0 1
gk 6282] ay‘m{o 0 0]
1 4 1 1 4 1

7-40



Why B-splines ?

Symmetry; compact support; explicit piecewise-polynomial form; positivity
Efficient interpolation algorithms (recursive filtering)

Well-suited for explicit computation of differential operators

Differentiation =- degree reduction & finite differences
Explicit control of image smoothness

Generality: transition from piecewise-constant (n = 0) to bandlimited model (n — 400)

Shortest functions that reproduce polynomials of degree n:

dan k], a2 = Zam[kz]ﬁn(a: —k), (m=0,...,n)

In particular: Z B (x—k) = (partition of unity)

Good approximation power

= Best interpolation quality for a given computational budget!
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7.3 FROM SPLINES TO WAVELETS

= Multiresolution: motivation
= Notation and conventions

= Haar transform revisited

= |mage pyramids

= Error (or Laplacian) pyramid
= From pyramids to wavelets
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Multiresolution: motivation

Why should one be stuck with a fixed-resolution image format?

m Multiscale processing

= Adapting resolution: coarse-to-fine or multigrid iteration strategies

= Speed: less computation + faster convergence

= Robustness

= Inspired by the human visual system

= Old idea (70’s, early 80’s)

[Rosenfeld, Burt & Adelson]

= Multiscale implementation of most iterative IP algorithms

m Multir
Compa

(«%ﬂ \
A
Qz,) s

®

"

Receptive fields size

Features

V2
=

1K
Me
X —
faces 3
and objects

IT
edges V4
\L and lines
Y/
V2
shapes Vi

)

71
{ 2
Fac

JA RN

/ 1\

visual field

'’ faces

sing)

objects

shapes

edges
Na

and lines
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Notation and conventions

m Basic signal space
9 P Level0: 4 a=1

Vo = {S(x) =) clk]p(z — k), CElg} /

keZ

m Fine-to-coarse sequence of subspaces

V0—>V1—> —>V;

m:{si(x):Zci[k]so<x_2i2ik>7Ci€€2} > .

keZ P 4

m Basis functions at resolution a = 2°
ik =p(z/2' — k)
Scale index i = dilation by a = 2* (powers of two!)

Translation index k& = shift by b = 2 - k
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Wavelets: Haar transform revisited

. so(x) Signal representation
; so(z) =) clklp(z — k)
2 kel

Scaling function

Y s (2) 2 ¢(2)
2 ,
9 s, (;) 4 6 8 Multiscale signal representation
z si(z) = cilklpir(@)
] keZ
Em— - ) Multiscale basis functions
: s3(z) i n() = 0 (:L’ —QiZZk)
:

2 4 B 8 7-45



Wavelets: Haar transform revisited

Wavelet:

| >

—_ (%] o -+

— ro o -
1 < ‘ >
-y
==

—_ (%3 o -+
1 < ‘ )
=]

— [ %] o -
1 < ‘ >
o

2 4 B 8 7-46



Wavelets: Haar transform revisited

i Wavelet:
Tl(x):Zdﬂk]wl,k +——t - | >
: ) A
t
ro(z) =y do[kltho s
(%) E}; kw2, | SR AR A I 8 s(z) = Zc[k]gp(x_ k)
-1 4 k
+ ? > 3
ra(x) = da[klizr | [
k ; i ; * ’ ’
+
ss(x) =Y cslklosk 2
3 zk: 31R]¥3,k | /

2 4 B 8 7-47



Basic ingredients

Generic representation: s, = >, ¢;|k|pi x

= vector space V; (integer shift-invariant)

Two-scale relation = sequence of nested subspaces

Ly(R)--->2 VoD ViD---DV;D---D{0}

Sequence of minimum-error approximations: sg — sy -+ — S;

= s, is the orthogonal projection of sy onto V;

Decoupling between error and approximation

= orthogonality of the residual spaces (i.e., Vk € Z, (p(-),¥(- — k)) = 0)

Wavelet decomposition: compact representation of the residues

Ti = Si—1 — S; = Zdz[/@]%k c W;

keZ

7-48



m-scale relation

m Causal B-spline of degree n

B (x) = B (x — "57)

m B-spline dilated by an integer factor m

m’l’L

m—1
B (x/m) = Zh" 8% (x — k) with H,,?,L(z)1<z zk

keZ k=0

m Example 1: Piecewise-constant case (n = 0, m) 1

\ 4

HC (2) =1+ 271+ 4+ 2= (m=Y (moving-sum filter)

m Example 2: piecewise-linear splines (m = 2, n = 1)

1
H21(z) — 5(2’ + 2+ z_l)

1/2

1/2

(1,1) %

(171)::

(1,2,1)
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Image pyramids

m Successive approximations at dyadic scales

Vi=1<si(®) = Y cilklpai (@ — 2'K) : ¢;[k] € £2(27)

keZd
€ d

Rescaled basis function: @i (x) = H g" (%)
k=1

m Repeated, separable application of REDUCE operator

Ci—1 [k‘] " C; [k]
—— Wk —{ :)_.
Ly

m Optimal prefilter for minimum Ly-norm approximation

~

h: separable, uniquely specified given the scaling function ()

Haar: 2 point average; otherwise typically IIR
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Error (or Laplacian) pyramid

REDUCE EXPAND

8 — i OB -0 w —

Least-squares pyramid Error pyramid
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And the connection with wavelets

and iterate.... you get the wavelet transform:

S.G. Mallat, "A theory of multiresolution signal decomposition: the wavelet
representation," IEEE Trans. Pattern Anal. Machine Intell., 11 (7), pp. 674-693, 1989
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2D basis functions and Haar expansion

Expansion coefficients

\ 4

Tensor-product basis functions >

vy 7-53



Haar: filterbank formulation

x[k] zlk +1] zk] + x[k + 1]

: . e 2
m Basic principle z[k] — xlk + 1]
2
_‘ _ .
sums differences
m Perfect reconstruction filterbank
_»@ ______ @_» H(z) Lowpass filter: H(z) = \%(1 +271)
|:-_.@ ------ @ G(2) Highpass filter: G(z) = %(1 — Y
m Tree-structured filterbank algorithm o " e

ST
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7.4 SUMMARY

A continuous/discrete image representation involves shifted basis functions p(x — k)
centered on the pixels. There is exactly one coefficient c[k] per pixel location.

The generating function ¢ (ax) may—or may not—have the interpolation property; in the
latter case, image interpolation involves a digital prefiltering step.

Interpolation is required for performing geometric transformations such as rotation, scal-
ing or warping.

The B-splines are a very useful family of generating functions. They are easy to manipu-
late and have many optimal properties (short support, etc...).

A multiscale image representation (or pyramid) is a series of fine-to-coarse approxima-
tions using basis functions of increasing sizes (dyadic scale progression).

The pyramid is constructed simply by iterative lowpass filtering and down-sampling.

The residues in a LS pyramid are orthogonal to the next coarser image approximation.
They can be represented concisely using wavelets (one-to-one representation).

7-55



References

S.G. Mallat, “A theory of multiresolution signal decomposition: The wavelet repre-
sentation, IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 7, pp. 674-693,
1989.

S. Mallat, A wavelet tour of signal processing. San Diego: Academic Press, 1998.

M. Unser, A. Aldroubi and M. Eden, “B-spline signal processing: Part |—Theory,’
IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 821-833, 1993.

M. Unser, A. Aldroubi and M. Eden, “B-spline signal processing: Part |l —Efficient
design and applications,” IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 834-
848, 1998.

M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE Signal
Processing Magazine, vol. 16, no. 6, pp. 22-38, November 1999.

7-56



