

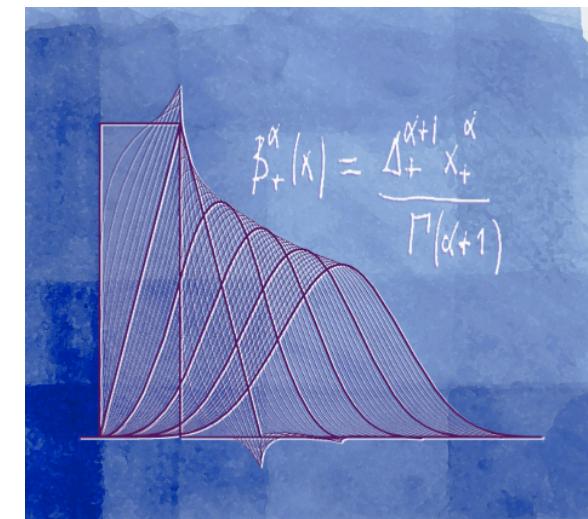
Image Processing

Chapter 7 Continuous/discrete image processing

Prof. Michael Unser, LIB

Prof. Dimitri Van De Ville, MIP

Dr. Daniel Sage, LIB



CONTENT

- **7.1 Continuous/discrete representation of images**
 - Classical image interpolation
 - Generalized image interpolation
 - Interpolation: filtering solution
- **7.2 Polynomial splines**
 - Splines: definition
 - B-spline basis functions
 - Interpolating splines
- **7.3 From splines to wavelets**
 - Haar transform revisited
 - Image pyramids
 - From pyramids to wavelets

INTRODUCTION

*At the beginning there was a continuum.
Man made it discrete !*

Continuous domain: $L_2(\mathbb{R}^d)$
 $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^d$

Discrete domain: $\ell_2(\mathbb{Z}^d)$
 $f[\mathbf{k}], \mathbf{k} \in \mathbb{Z}^d$

- real-world objects
- images
- sensor input

- measurements
- algorithms
- image processing

- Sampling and image acquisition
- Continuous/discrete algorithm design

Finding discrete solutions for problems formulated in the continuous domain

- Interpolation
- Spatial transformations, warping
- Feature detection (edges)
- Image registration
- Tomography, etc...

- Multiresolution approaches

- Coarse-to-fine and multigrid algorithms
- Image pyramids and wavelets

7.1 CONTINUOUS/DISCRETE REPRESENTATIONS

- Classical image interpolation
- Generalized interpolation
- Interpolation: filtering solution
- Interpolating basis functions
- Spatial transformations

Classical image interpolation

Discrete image data

\iff

Continuous image model

$f[\mathbf{k}], \mathbf{k} = (k_1, \dots, k_d) \in \mathbb{Z}^d$

$f(\mathbf{x}), \mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$

■ Interpolation formula: $f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^d} f[\mathbf{k}] \varphi_{\text{int}}(\mathbf{x} - \mathbf{k})$

$f[\mathbf{k}]$: pixel values at location \mathbf{k}

$\varphi_{\text{int}}(\mathbf{x})$: continuous-space interpolation function

$\varphi_{\text{int}}(\mathbf{x} - \mathbf{k})$: interpolation function translated to location \mathbf{k}

■ Interpolation condition

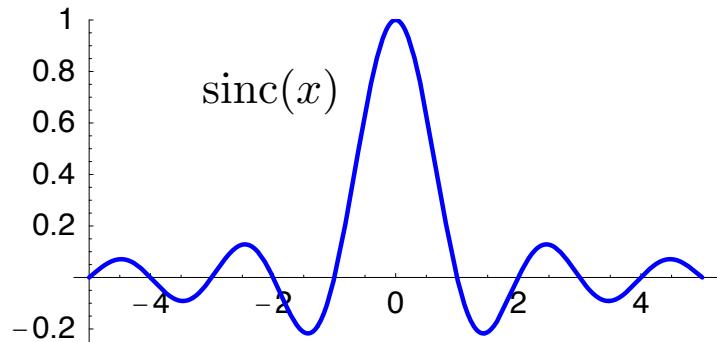
At the grid points $\mathbf{x} = \mathbf{k}_0$: $f[\mathbf{k}_0] = \sum_{\mathbf{k} \in \mathbb{Z}^p} f[\mathbf{k}] \varphi_{\text{int}}(\mathbf{k}_0 - \mathbf{k})$

Only possible $\forall f$ iff.

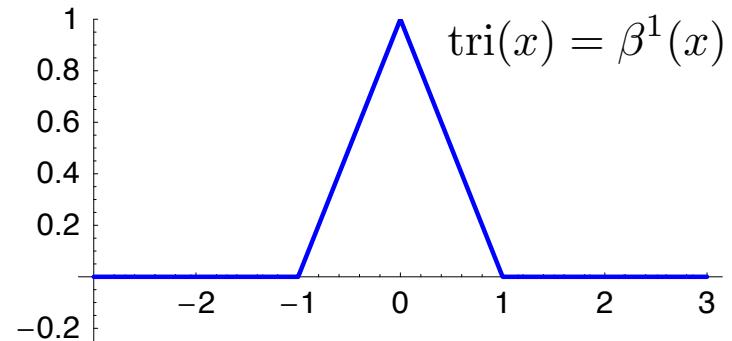
$$\varphi_{\text{int}}(\mathbf{k}) = \begin{cases} 1, & \mathbf{k} = \mathbf{0} \\ 0, & \text{otherwise} \end{cases}$$

Examples of popular interpolation functions

Interpolation condition: $\varphi_{\text{int}}(x)|_{x=k} = \delta[k]$



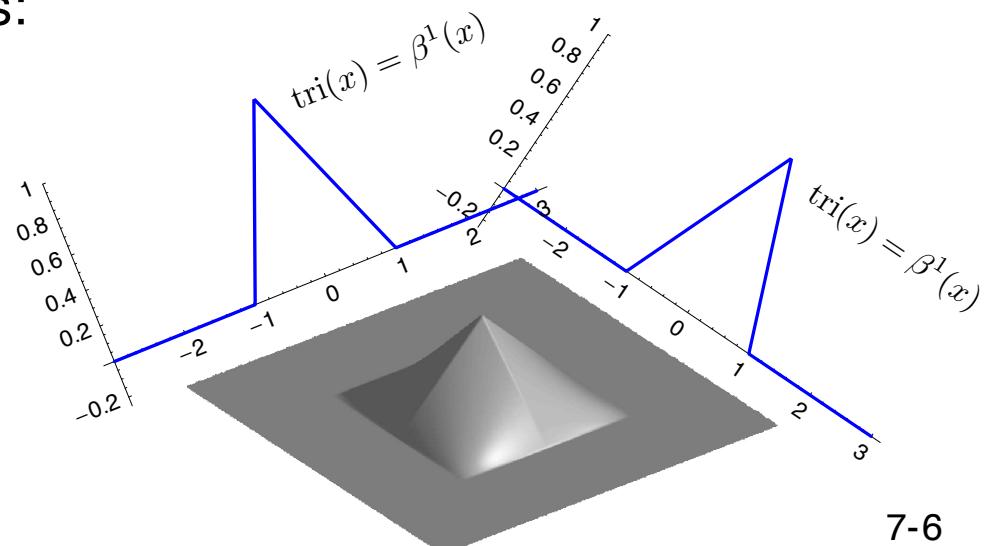
$$\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$



$$\text{tri}(x) = \beta^1(x) = \begin{cases} 1 - |x| & \text{if } |x| \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Separable extension to higher dimensions:

$$\varphi_{\text{int}}(\mathbf{x}) = \prod_{i=1}^d \varphi_{\text{int}}(x_i)$$



Generalized image interpolation

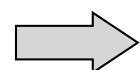
■ Desired features for the interpolation kernel

- Short (to minimize computations)
- Simple expression (e.g., polynomial)
- Smooth (to avoid model discontinuities)
- Good approximation properties: reproduction of polynomials

■ Generalized interpolation formula:

- Simple integer-shift-invariant structure
- Simple expression (e.g., polynomial)
- φ selected freely (not interpolating and much shorter)

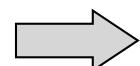
$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^d} c[\mathbf{k}] \varphi(\mathbf{x} - \mathbf{k})$$



Faster interpolation formulas!

... but one new difficulty: How to pre-compute the coefficients $c[\mathbf{k}]$?

■ Separable basis functions: $\varphi(\mathbf{x}) = \varphi(x_1) \cdot \varphi(x_2) \cdots \varphi(x_d)$



Further acceleration

Interpolation: filtering solution

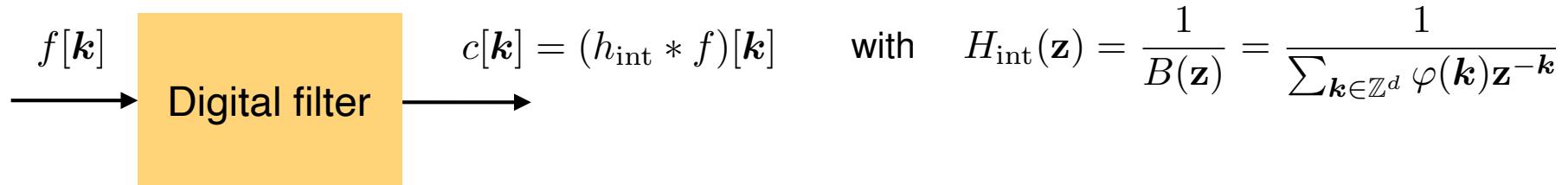
Interpolation problem: Given the samples $\{f[\mathbf{k}]\}$, find the coefficients $\{c[\mathbf{k}]\}$

■ Interpolation condition: $f(\mathbf{x})|_{\mathbf{x}=\mathbf{k}} = f[\mathbf{k}] = \sum_{\mathbf{k}_1 \in \mathbb{Z}^d} c[\mathbf{k}_1] \varphi(\mathbf{k} - \mathbf{k}_1)$

→ Discrete convolution equation: $f[\mathbf{k}] = (b * c)[\mathbf{k}]$

$$\text{with } b[\mathbf{k}] \triangleq \varphi(\mathbf{k}) \quad \xleftrightarrow{z} \quad B(\mathbf{z}) = \sum_{\mathbf{k} \in \mathbb{Z}^d} b[\mathbf{k}] \mathbf{z}^{-\mathbf{k}}$$

■ Inverse-filtering solution

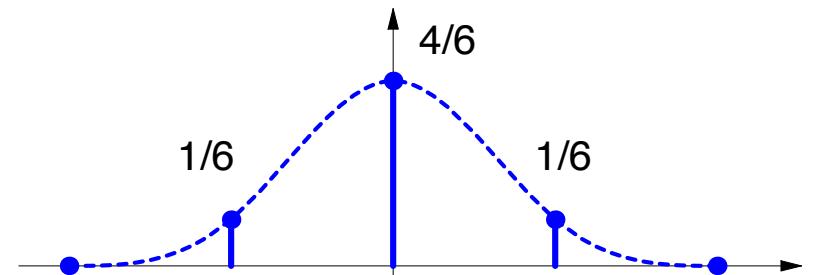


Note: $\varphi(\mathbf{x})$ separable $\Rightarrow h_{\text{int}}[\mathbf{k}]$ separable

Example: cubic-spline interpolation

■ Cubic B-spline

$$\varphi(x) = \beta^3(x) = \begin{cases} \frac{2}{3} - \frac{1}{2}|x|^2(2 - |x|), & 0 \leq |x| < 1 \\ \frac{1}{6}(2 - |x|)^3, & 1 \leq |x| < 2 \\ 0, & \text{otherwise} \end{cases}$$



■ Discrete B-spline kernel: $B(z) = \frac{z + 4 + z^{-1}}{6}$

■ Interpolation filter

$$\frac{6}{z + 4 + z^{-1}} = \frac{(1 - \alpha)^2}{(1 - \alpha z)(1 - \alpha z^{-1})} \quad \xleftrightarrow{z} \quad h_{\text{int}}[k] = \left(\frac{1 - \alpha}{1 + \alpha} \right) \alpha^{|k|}$$

$$\alpha = -2 + \sqrt{3} = -0.171573$$

Symmetric exponential (cf. Chap IP-3)

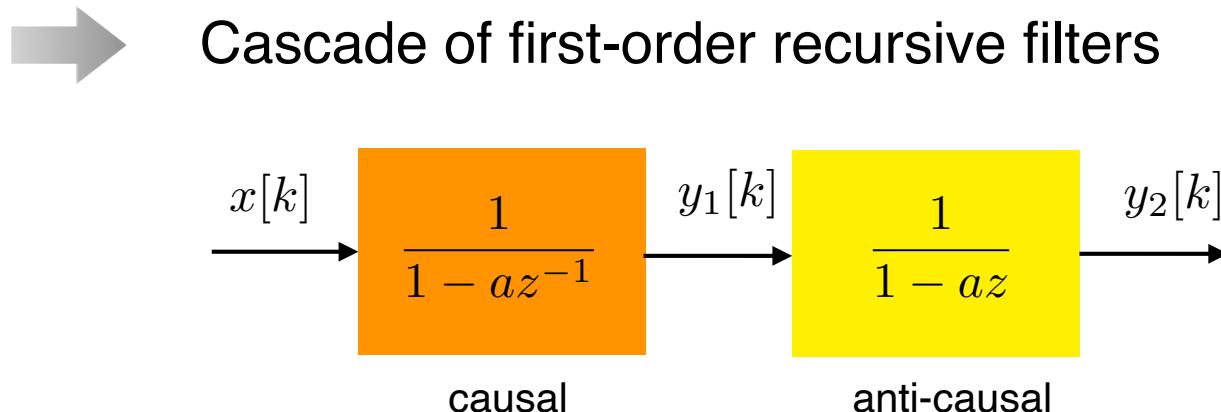
■ Multidimensional interpolation

Separability \Rightarrow successive 1D filtering along the dimensions of the data

Exponential filtering: implementation

REMINDER

- Exponential filter: $H_a(z) = \frac{C_a}{(1 - az^{-1})(1 - az)}$



$$Y_1(z) = \frac{X(z)}{1 - az^{-1}} \quad \Rightarrow \quad Y_1(z) = X(z) + az^{-1}Y_1(z)$$

■ Recursive-filtering algorithm

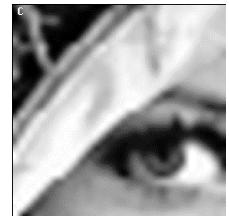
1. Causal filtering: $y_1[k] = x[k] + ay_1[k - 1]$, for $(k = 0, \dots, N - 1)$
2. Anti-causal filtering: $y_2[k] = y_1[k] + ay_2[k + 1]$, for $(k = N - 1, \dots, 0)$
3. Normalization: $y[k] = C_a \cdot y_2[k]$

Cubic-spline coefficients in 2D

Pixel values $f[k, l]$

B-spline coefficients $c[k, l]$

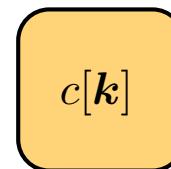
One-to-one continuous/discrete representation



Continuously-defined signal

$$f(x) = \sum_{k \in \mathbb{Z}^p} c[k] \varphi(x - k)$$

Expansion coefficients

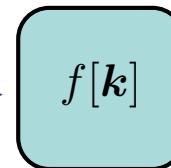


Riesz-basis property

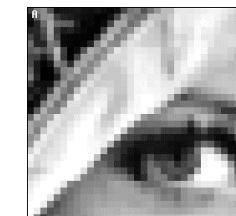
Digital filtering

$* b$ (FIR)

$* h_{\text{int}}$ (IIR)



Sampling: $f(x)|_{x=k}$



Discrete signal

Interpolating basis function

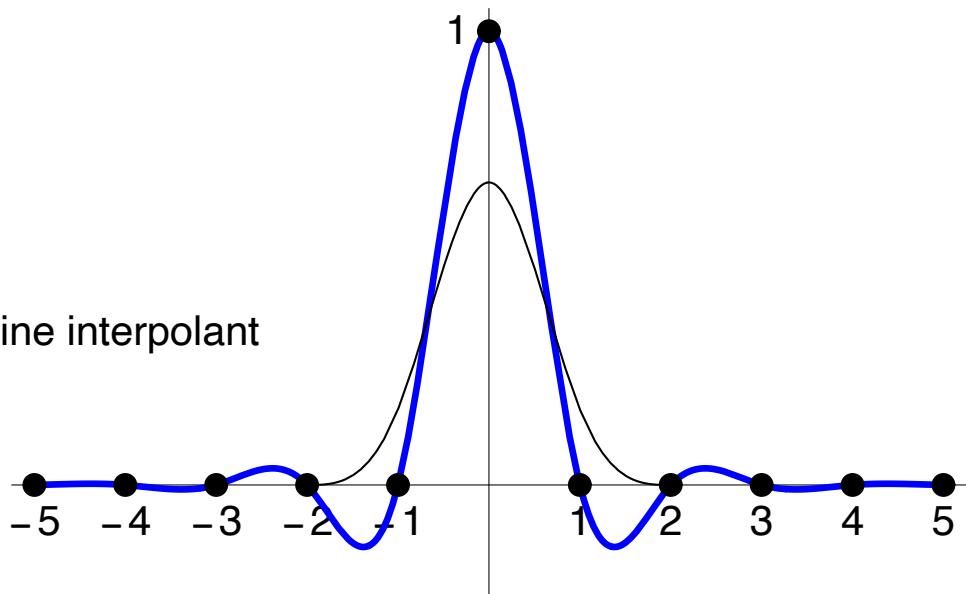
- Equivalent interpretation of generalized interpolation

$$\begin{aligned} f(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x - k) &= \sum_{k \in \mathbb{Z}} (f * h_{\text{int}})[k] \varphi(x - k) \\ &= \sum_{k \in \mathbb{Z}} f[k] \varphi_{\text{int}}(x - k) \end{aligned}$$

- Interpolation basis function

$$\varphi_{\text{int}}(x) = \sum_{k \in \mathbb{Z}} h_{\text{int}}[k] \varphi(x - k)$$

Example: cubic-spline interpolant



Finite-cost implementation of an infinite impulse response interpolator!

Spatial transformation

- One-to-one coordinate mapping $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$

$$\mathbf{x} = (x_1, \dots, x_d) \rightarrow \boldsymbol{\xi} = T(\mathbf{x})$$

$$\boldsymbol{\xi} = (\xi_1, \dots, \xi_d) \rightarrow \mathbf{x} = T^{-1}(\boldsymbol{\xi})$$

(e.g., affine transformation $= A\mathbf{x} + \mathbf{b}$)

- Image transformation by re-sampling: $f_T(\boldsymbol{\xi}_0) = f\left(\underbrace{T^{-1}\{\boldsymbol{\xi}_0\}}_{\mathbf{x}_0}\right) = \sum_{\mathbf{k} \in \mathbb{Z}^d} c[\mathbf{k}] \varphi(\mathbf{x}_0 - \mathbf{k})$

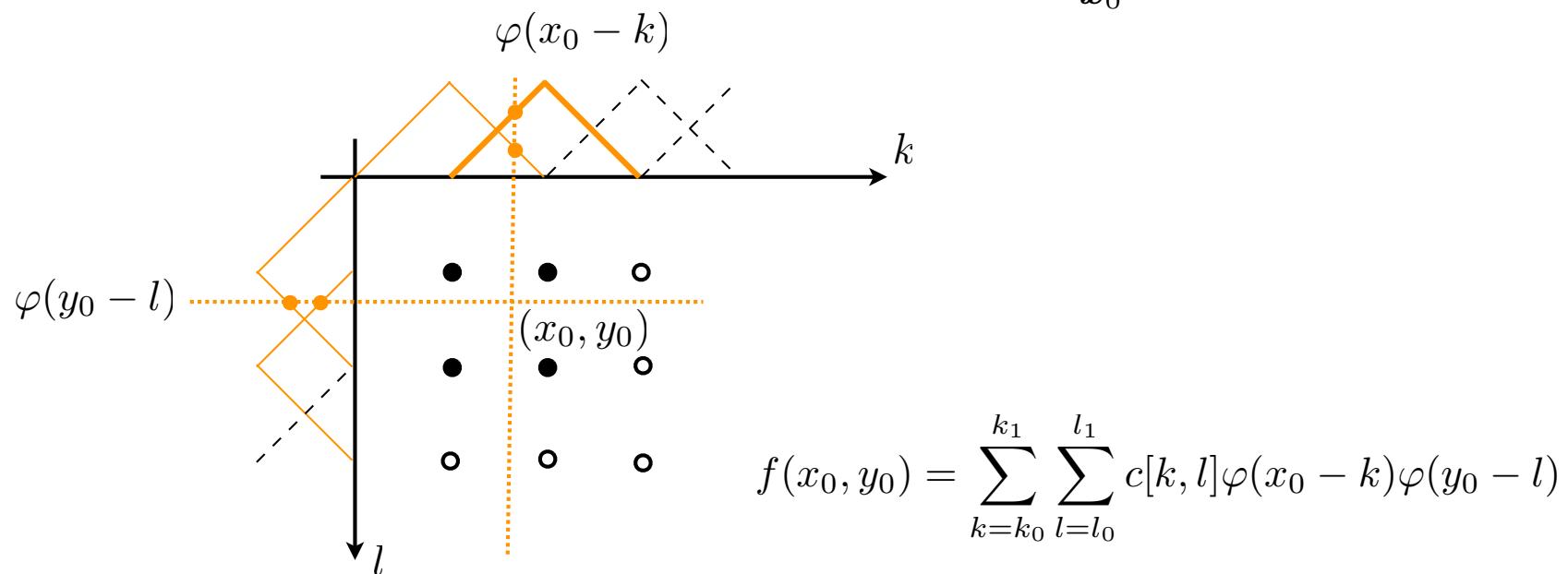
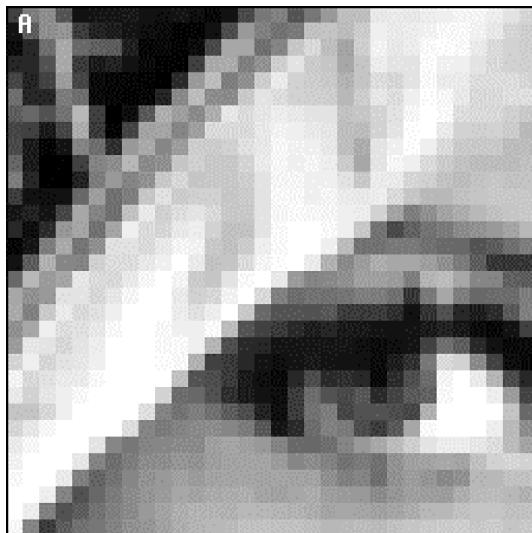


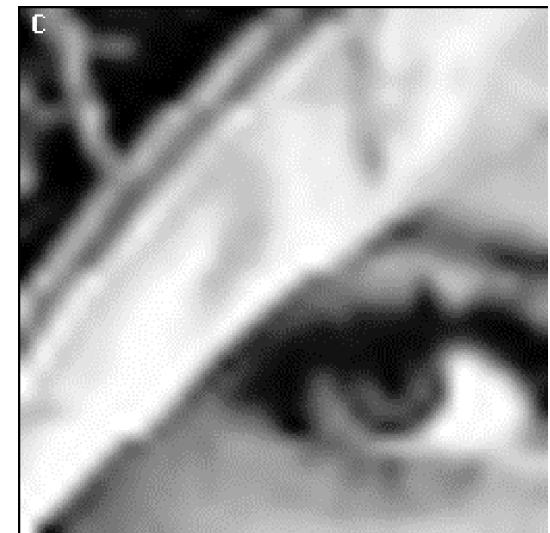
Image zooming



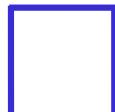
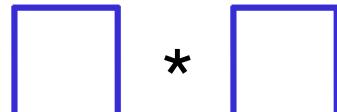
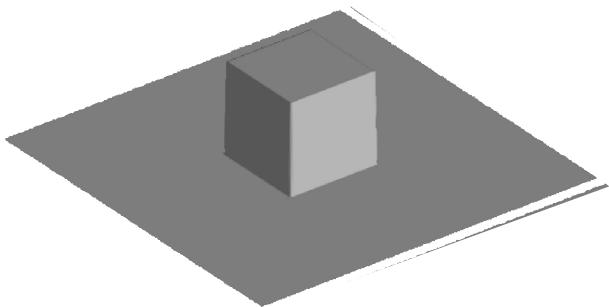
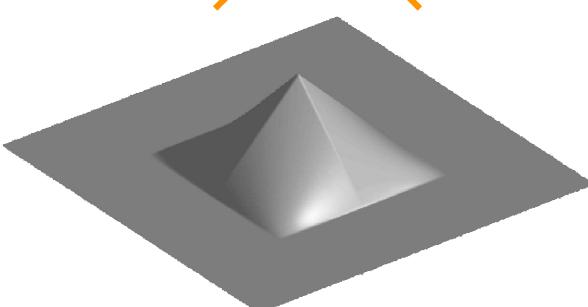
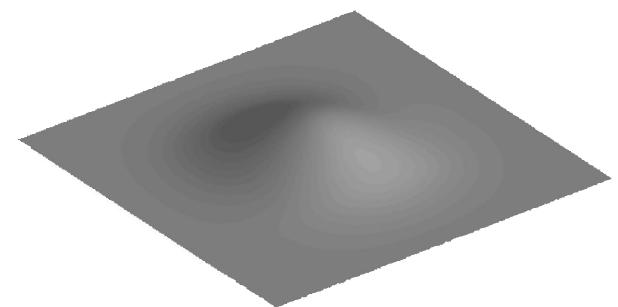
Piecewise constant



Bilinear



Cubic spline



Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins!

Bilinear

Windowed-sinc

Cubic spline

Image-registration problem

Source: $f_S(x)$

Target: $f_T(x)$

Find a spatial transformation: $x \rightarrow g(x)$ such that $f_S(g(x)) \approx f_T(x)$

■ Basic ingredients of a registration algorithm

- A metric for comparing images
- A class of admissible transformations
- A resampling/interpolation mechanism
- An optimization procedure

Splines

High-quality rigid-body registration

- Registration as a non-linear least-squares estimation problem

$$\min_{\mathbf{A}, \mathbf{x}_0} \left\{ \sum_{\mathbf{k}} |f_S(\mathbf{A}(\mathbf{k} - \mathbf{x}_0)) - f_T[\mathbf{k}]|^2 \right\}$$

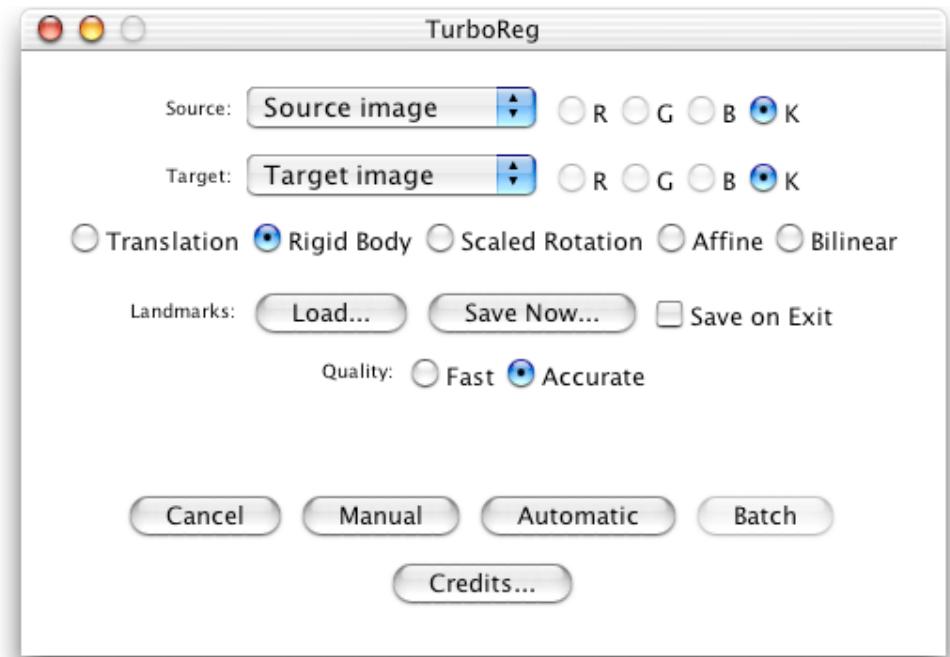
$f_S(\mathbf{x})$: source image (continuously-defined)

$f_T[\mathbf{k}]$: target image (discrete)

Plugin for ImageJ

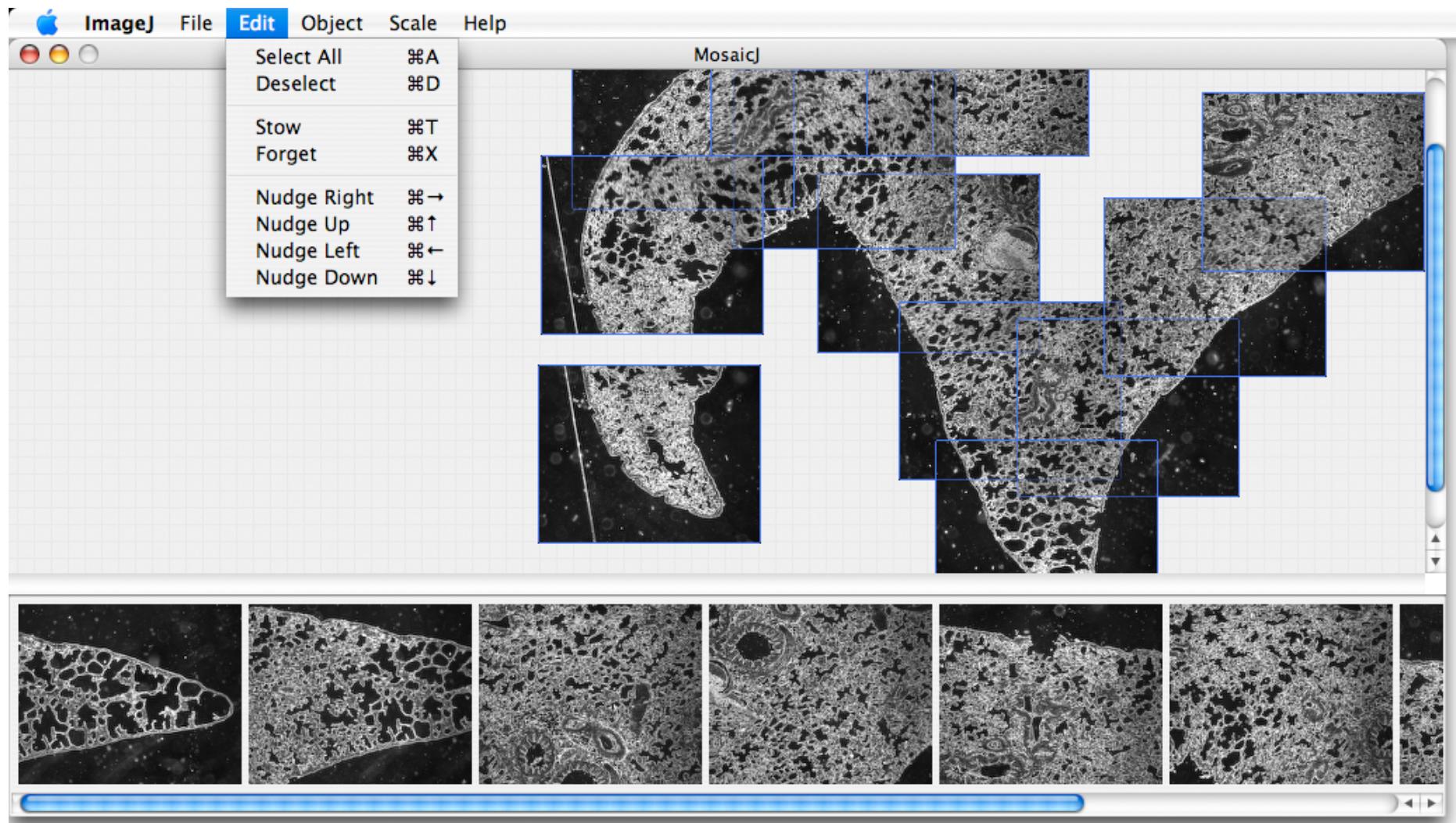
- Proposed spline-based algorithm

- Cubic-spline interpolation of $f_S(\mathbf{x})$
- Coarse-to-fine strategy
 - cubic-spline pyramids
- Marquardt-Levenberg optimizer
- Consistent implementation
 - least-squares approximation
 - exact gradient

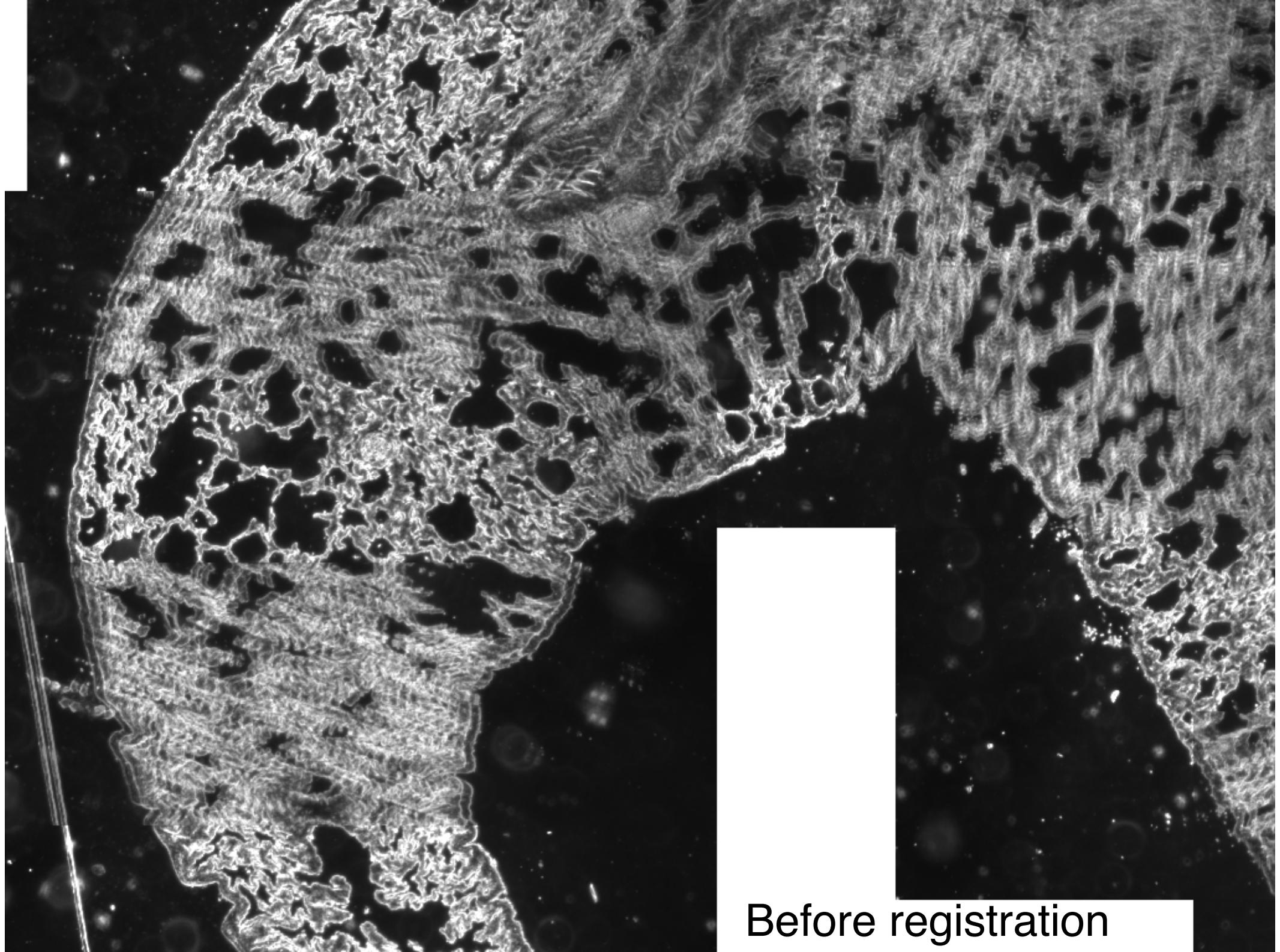


MosaicJ: A stitching tool for microscopy

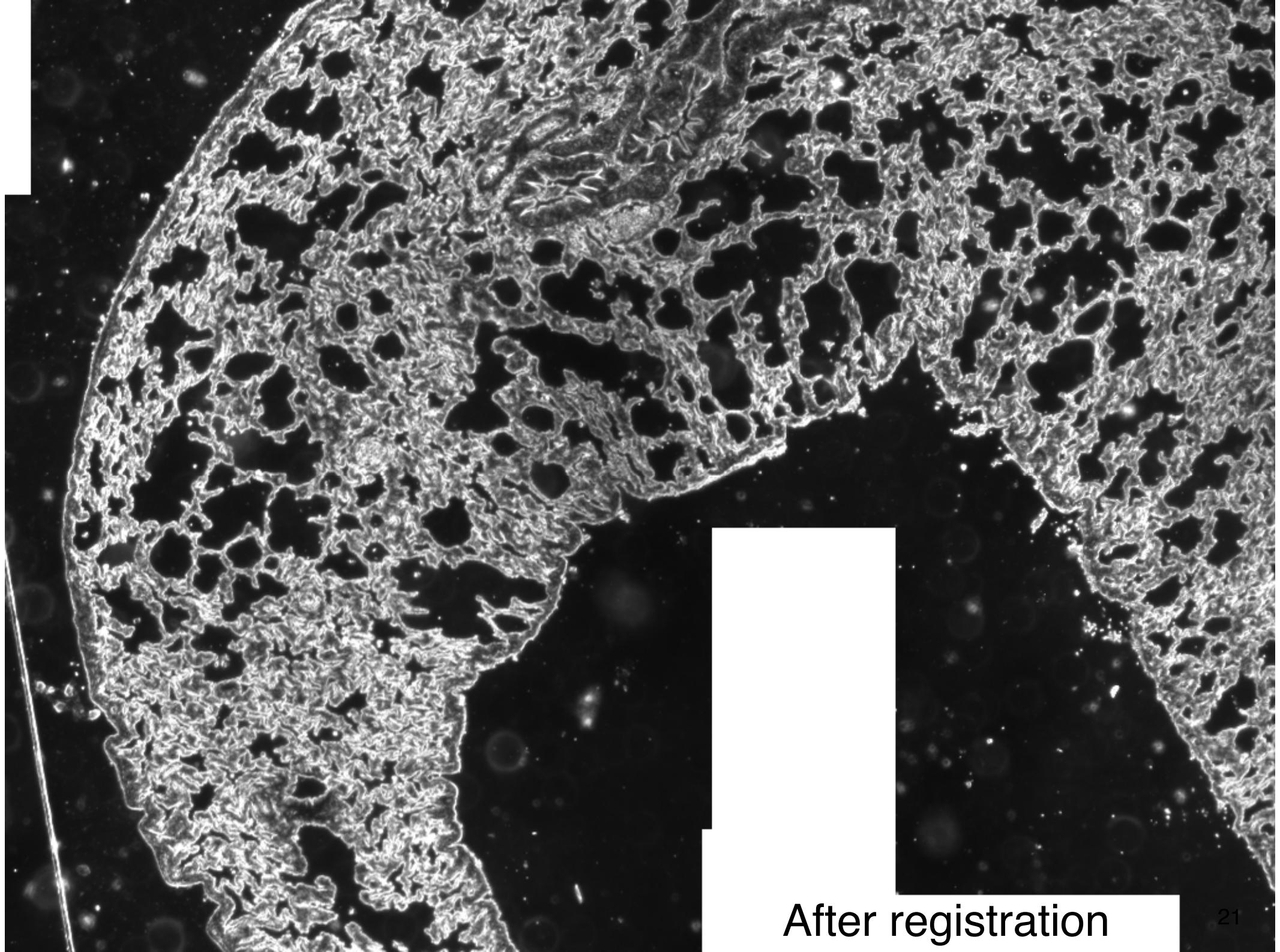
User-friendly interface (within ImageJ)



Computational engine: TurboReg

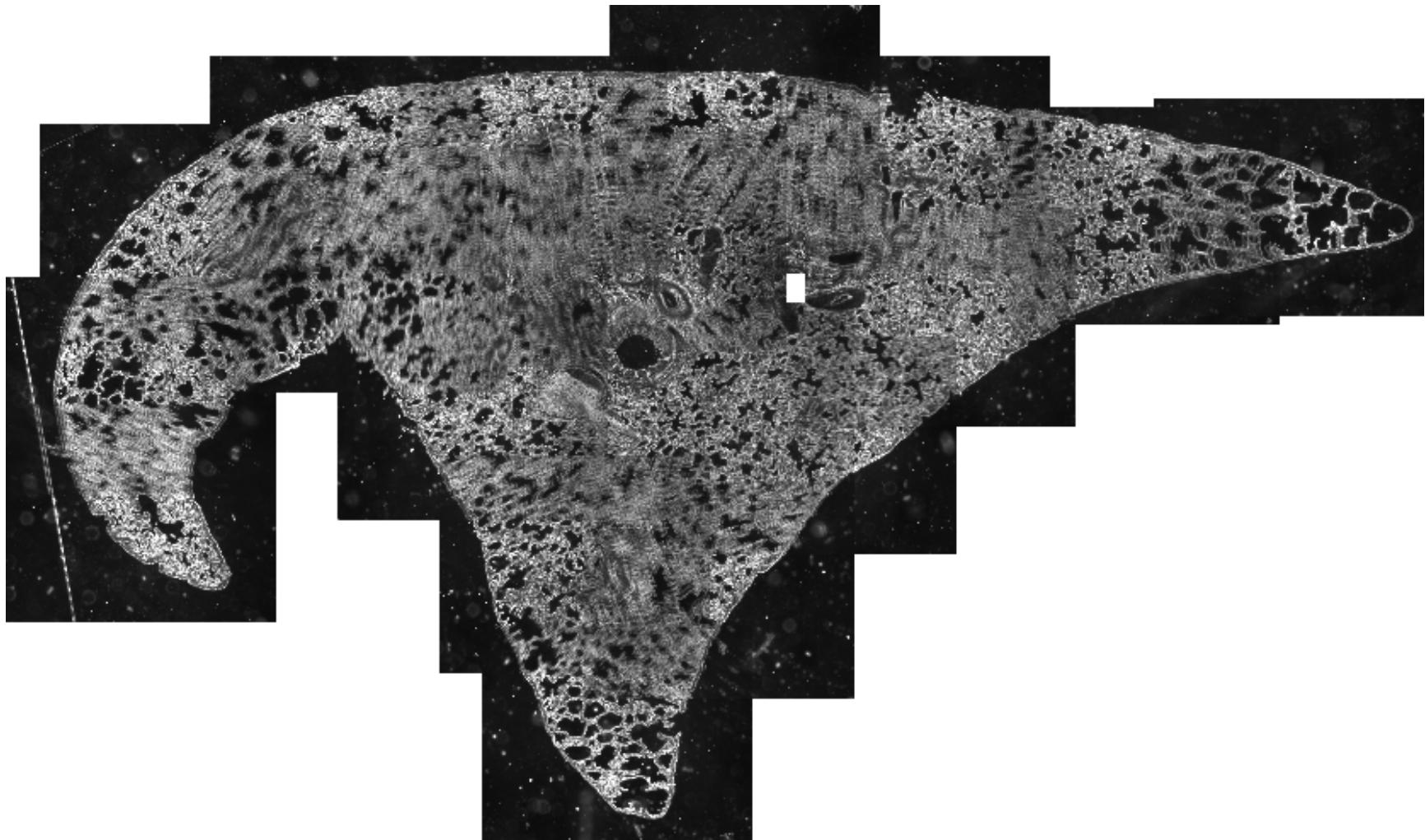


Before registration

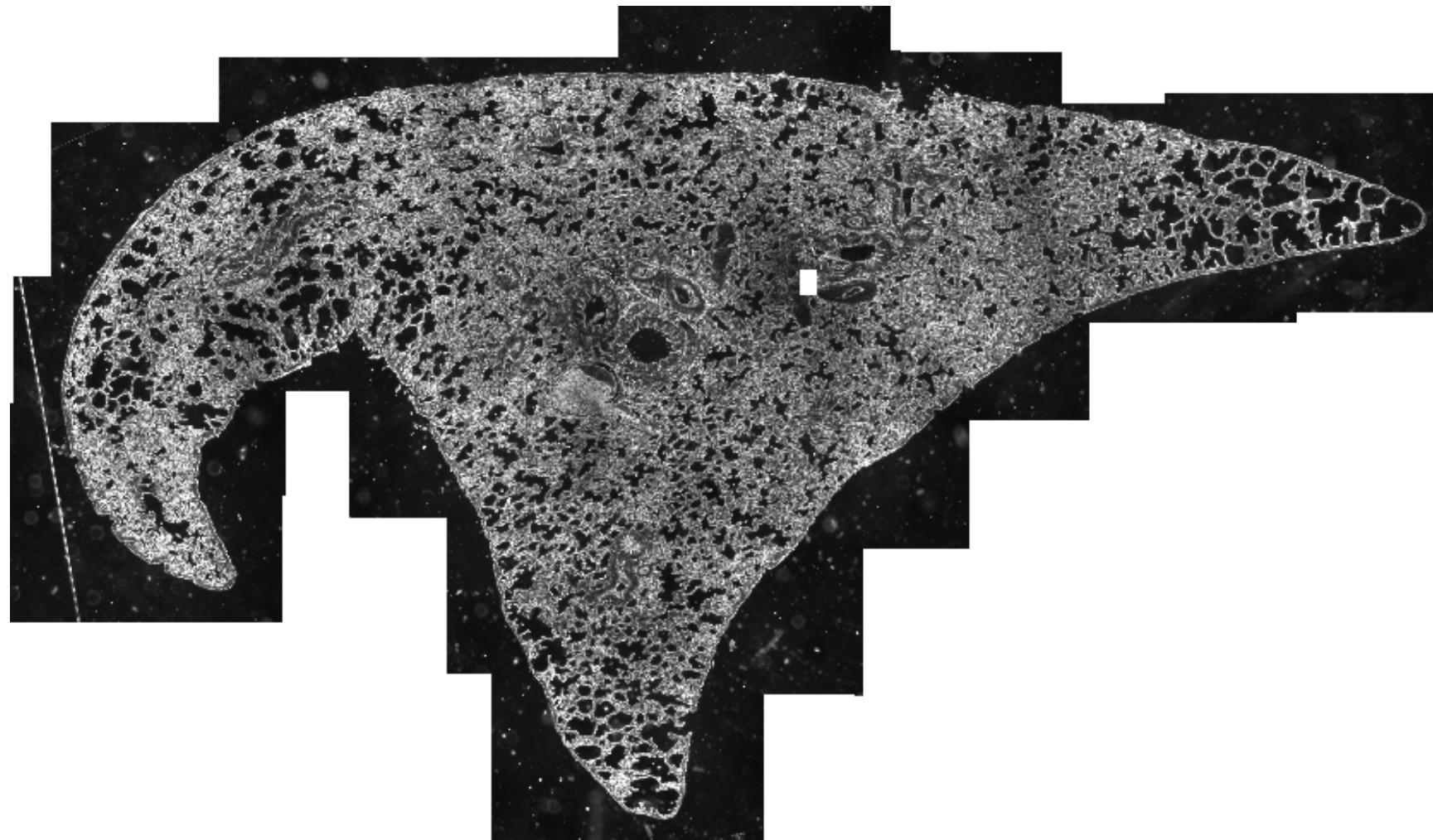


After registration

Before: Twenty tiles (636 x 512)



After: One mosaic (3'332 x 1'957)



P. Thévenaz, M. Unser, *Microscopy Research and Technique*, 70(2), pp. 135-146, 2007

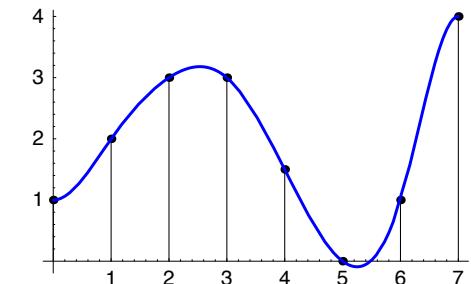
7.2 POLYNOMIAL SPLINES REPRESENTATIONS

- Splines: definition
- Basic atoms: B-splines
- B-spline properties
- B-spline interpolation
- Why B-splines?

Splines: Definition

Definition: A function $s(x)$ is a polynomial spline of degree n with knots $\dots < x_k < x_{k+1} < \dots$ iff. it satisfies the following two properties:

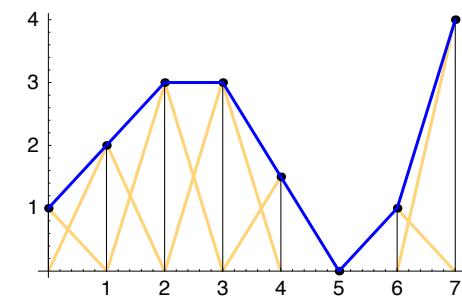
- Piecewise polynomial: $s(x)$ is a polynomial of degree n within each interval $[x_k, x_{k+1}]$;
- Higher-order continuity: $s(x), s^{(1)}(x), \dots, s^{(n-1)}(x)$ are continuous at the knots x_k .



- Effective degrees of freedom per segment:

$$(n+1) - n = 1$$

(polynomial coefficients) (constraints)



- **Cardinal splines** = unit spacing and infinite number of knots

The right framework for signal processing

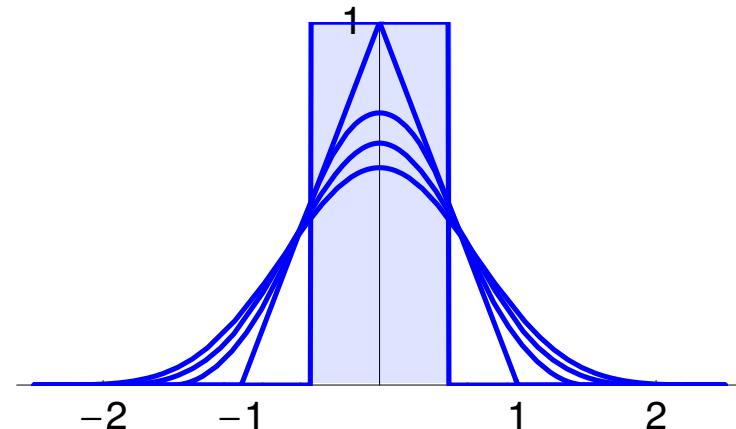
B-spline basis functions

- Centered B-spline of degree n

$$\beta^0(x) = \begin{cases} 1, & |x| < \frac{1}{2} \\ 0, & |x| > \frac{1}{2} \end{cases}$$

$$\beta^n(x) = \underbrace{(\beta^0 * \beta^0 * \cdots * \beta^0)}_{(n+1) \text{ times}}(x)$$

$$\boxed{} * \boxed{} \quad \dots \quad * \boxed{}$$



- Fourier-domain formula: $\hat{\beta}^n(\omega) = \left(\frac{\sin(\omega/2)}{\omega/2} \right)^{n+1}$

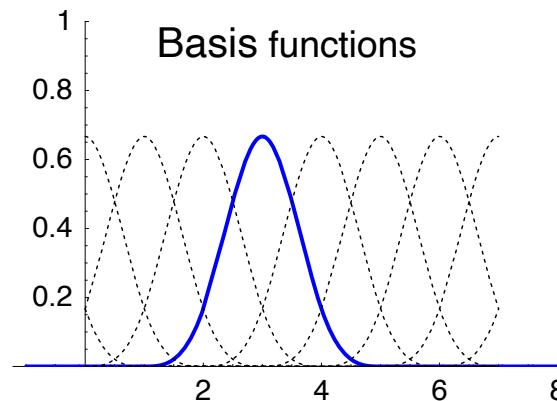
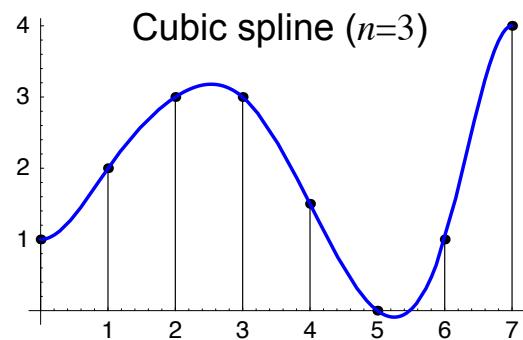
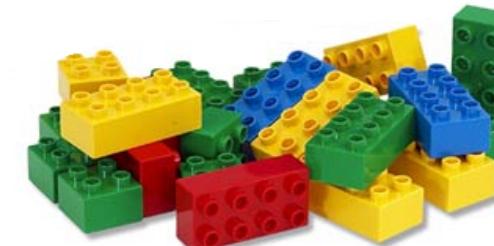
B-spline representation

Theorem (Schoenberg, 1946)

Every cardinal polynomial spline $s(x)$ has a unique and stable representation in terms of its B-spline expansion

$$s(x) = \sum_{k \in \mathbb{Z}} c[k] \beta^n(x - k)$$

analog signal discrete signal
(B-spline coefficients)



In modern terminology: $\{\beta^n(x - k)\}_{k \in \mathbb{Z}}$ forms a Riesz basis

Differential operators

■ Derivative

$$Df(x) = \frac{df(x)}{dx}$$

$$D \quad \xleftrightarrow{\mathcal{F}} \quad j\omega$$

■ Multiple differentiation

$$D^n f(x) = \frac{d^n f(x)}{dx^n}$$

$$D^n \quad \xleftrightarrow{\mathcal{F}} \quad (j\omega)^n$$

$$D^{n_1} D^{n_2} f(x) = D^{n_1+n_2} f(x)$$

■ Integrator

$$D^{-1} f(x) = \int_{-\infty}^x f(t) dt$$

$$D^{-1} \quad \xleftrightarrow{\mathcal{F}} \quad \frac{1}{j\omega} + \pi\delta(\omega)$$

■ Finite difference

$$\Delta f(x) = f\left(x + \frac{1}{2}\right) - f\left(x - \frac{1}{2}\right)$$

$$\Delta \quad \xleftrightarrow{\mathcal{F}} \quad e^{j\omega/2} - e^{-j\omega/2}$$

■ Higher-order finite difference

$$\Delta^n f(x) = \sum_{k=0}^n \binom{n}{k} (-1)^k f\left(x - k + \frac{n}{2}\right)$$

$$\Delta^n \quad \xleftrightarrow{\mathcal{F}} \quad \left(e^{j\omega/2} - e^{-j\omega/2}\right)^n$$

$$\Delta^{n_1} \Delta^{n_2} f(x) = \Delta^{n_1+n_2} f(x)$$

B-splines and derivatives

Derivative operator: $D = \frac{d}{dx} \longleftrightarrow \hat{D}(\omega) = j\omega$

Finite difference operator: $\Delta \longleftrightarrow \hat{\Delta}(\omega) = e^{j\omega/2} - e^{-j\omega/2} = j\omega + \mathcal{O}(\omega^3)$

■ Fourier transform of a B-spline revisited

$$\hat{\beta}^0(\omega) = \frac{\sin(\omega/2)}{\omega/2} = \frac{e^{j\omega/2} - e^{-j\omega/2}}{j\omega} = \frac{\hat{\Delta}(\omega)}{\hat{D}(\omega)}$$

$$\hat{\beta}^n(\omega) = \left(\frac{\sin(\omega/2)}{\omega/2} \right)^{n+1} = \frac{\hat{\Delta}^{n+1}(\omega)}{\hat{D}^{n+1}(\omega)}$$

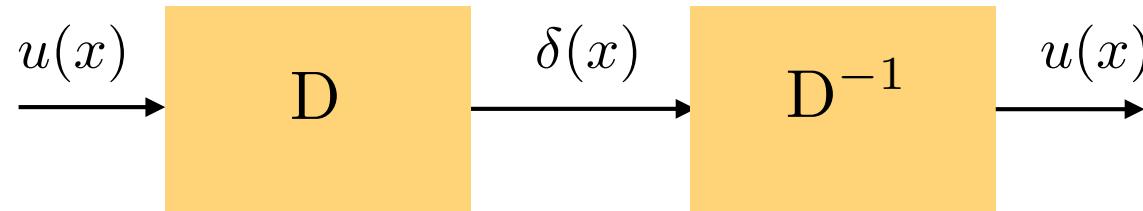
Discrete-space operator

Continuous-space operator

■ Explicit derivative formula

$$D^m \beta^n(x) = \Delta^m \beta^{n-m}(x) \longleftrightarrow \hat{D}^m(\omega) \underbrace{\left(\frac{\hat{\Delta}^{n+1}(\omega)}{\hat{D}^{n+1}(\omega)} \right)}_{\hat{\beta}^n(\omega)} = \hat{\Delta}^m(\omega) \underbrace{\left(\frac{\hat{\Delta}^{n+1-m}(\omega)}{\hat{D}^{n+1-m}(\omega)} \right)}_{\hat{\beta}^{n-m}(\omega)}$$

Refresher: impulse response of n -fold integrator



$$D^{-1}\delta(x) = u(x)$$

$$D^{-2}\delta(x) = (u * u)(x) = \int_{-\infty}^x u(t) dt = \frac{x_+}{1!}$$

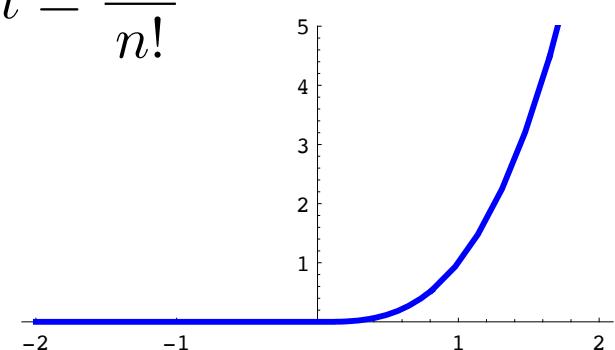
$$D^{-3}\delta(x) = (u * u * u)(x) = \int_0^x t dt = \frac{x_+^2}{2!}$$

$$\vdots$$

$$\vdots$$

$$D^{-(n+1)}\delta(x) = \underbrace{(u * \dots * u)}_{(n+1) \text{ times}}(x) = \int_0^x \frac{t^{n-1}}{(n-1)!} dt = \frac{x_+^n}{n!}$$

One-sided power function: $x_+^n = \begin{cases} x^n, & x \geq 0 \\ 0, & x < 0 \end{cases}$



Explicit space-domain B-spline formula

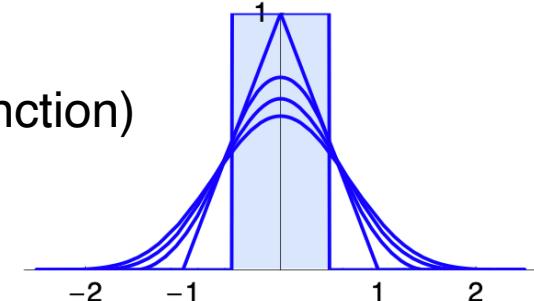
- B-spline of degree 0: $\beta^0(x) = u(x + \frac{1}{2}) - u(x - \frac{1}{2}) = \Delta u(x) = \Delta D^{-1} \delta(x)$



- Higher-order generalization

$$\beta^n(x) = \frac{\Delta^{n+1} x_+^n}{n!} = \frac{1}{n!} \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \left(x - k + \frac{n+1}{2} \right)_+^n$$

where $(x)_+^n = \begin{cases} x^n, & x \geq 0 \\ 0, & x < 0 \end{cases}$ (one-sided power function)



Proof: $\beta^n(x) = \underbrace{(\beta^0 * \beta^0 * \dots * \beta^0)}_{(n+1) \text{ times}}(x) = \underbrace{(\Delta u * \dots * \Delta u)}_{(n+1) \text{ times}}(x)$

$$= \Delta^{n+1} \underbrace{(u * \dots * u)}_{(n+1) \text{ times}}(x) = \Delta^{n+1} D^{-(n+1)} \delta(x) = \Delta^{n+1} \frac{x_+^n}{n!}$$

B-spline properties

- Symmetry, nonnegativity: $\beta^n(x) = \beta^n(-x)$ and $\beta^n(x) \geq 0$
- Piecewise polynomial: $\beta^n(x) = \frac{\Delta^{n+1} x_+^n}{n!}$
- Compact support: $[-\frac{n+1}{2}, \frac{n+1}{2}]$
 \Rightarrow shortest polynomial spline of degree n
- Explicit differentiation formulas

$$D^1 \beta^n(x) = \Delta \beta^{n-1}(x) = \beta^{n-1} \left(x + \frac{1}{2} \right) - \beta^{n-1} \left(x - \frac{1}{2} \right)$$

$$D^m \beta^n(x) = \Delta^m \beta^{n-m}(x)$$

- Controlled smoothness: Hölder-continuous of order n
 \Rightarrow bounded derivative of order n

Efficient B-spline interpolation

■ Discrete B-spline kernels: $b_1^n[k] = \beta^n(x)|_{x=k}$ \xleftarrow{z} $B_1^n(z) = \sum_{k=-\lfloor n/2 \rfloor}^{\lfloor n/2 \rfloor} \beta^n[k] z^{-k}$

■ B-spline interpolation: filtering solution

$$f(x) = \sum_{l \in \mathbb{Z}} c[l] \beta^n(x - l)$$

$$f[k] = (b_1^n * c)[k] \quad \Rightarrow \quad c[k] = (h_{\text{int}}^n * f)[k]$$

■ Efficient recursive solution

$$h_{\text{int}}^n[k] \quad \xleftarrow{z} \quad \frac{1}{B_1^n(z)} = c_0 \prod_{i=1}^{\lfloor n/2 \rfloor} \left(\frac{-\alpha_i}{(1 - \alpha_i z)(1 - \alpha_i z^{-1})} \right)$$

→ Cascade of symmetric exponential filters (cf. Chap IP-3)

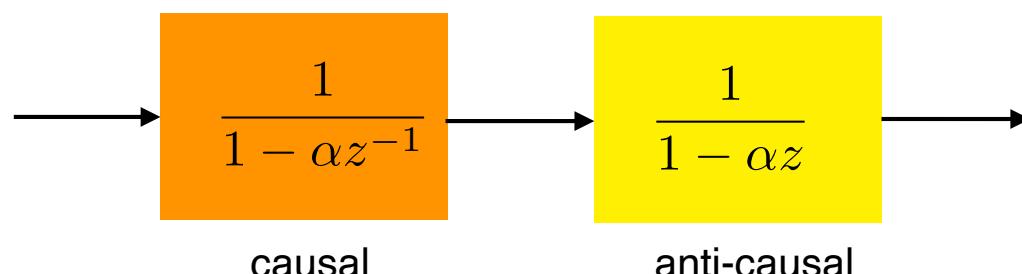


TABLE I
TRANSFER FUNCTIONS AND POLES OF DIRECT B-SPLINE FILTERS FOR $n = 0$ TO 7

n	Direct B-Spline Filter: $B_1^n(z)^{-1}$	c_0	Poles: $\{ z_i < 1, i = 1, \dots, n\}$
0	1	1	—
1	1	1	—
2	$\frac{8}{z + 6 + z^{-1}}$	8	$z_1 = -3 + 2\sqrt{2}$ $= -0.171573$
3	$\frac{6}{z + 4 + z^{-1}}$	6	$z_1 = -2 + \sqrt{3}$ $= -0.267949$
4	$\frac{384}{z^2 + 76z + 230 + 76z^{-1} + z^{-2}}$	384	$z_1 = -0.361341$ $z_2 = -0.0137254$
5	$\frac{120}{z^2 + 26z + 66 + 26z^{-1} + z^{-2}}$	120	$z_1 = -0.430575$ $z_2 = -0.0430963$
6	$\frac{46080}{z^3 + 722z^2 + 10543z + 23548 + 10543z^{-1} + 722z^{-2} + z^{-3}}$	46080	$z_1 = -0.488295$ $z_2 = -0.0816793$ $z_3 = -0.00141415$
7	$\frac{5040}{z^3 + 120z^2 + 1191z + 2416 + 1191z^{-1} + 120z^{-2} + z^{-3}}$	5040	$z_1 = -0.53528$ $z_2 = -0.122555$ $z_3 = -0.00914869$

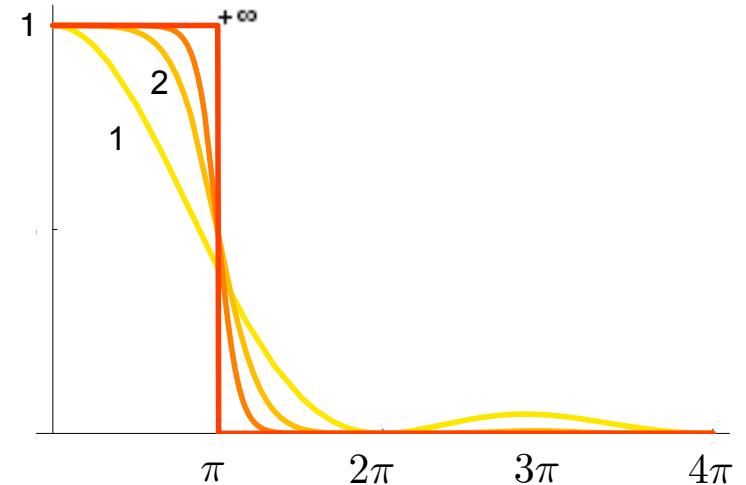
Limiting behavior (splines)

- Spline interpolator

Impulse response

$$\varphi_{\text{int}}^n(x) \quad \xleftrightarrow{\mathcal{F}} \quad \hat{\varphi}_{\text{int}}^n(\omega) = \left(\frac{\sin(\omega/2)}{\omega/2} \right)^{n+1} H_{\text{int}}^n(e^{j\omega})$$

Frequency response



- Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator (ideal filter) as the degree goes to infinity:

$$\lim_{n \rightarrow \infty} \varphi_{\text{int}}^n(x) = \text{sinc}(x), \quad \lim_{n \rightarrow \infty} \hat{\varphi}_{\text{int}}^n(\omega) = \text{rect}\left(\frac{\omega}{2\pi}\right) \quad (\text{in all } L_p\text{-norms})$$

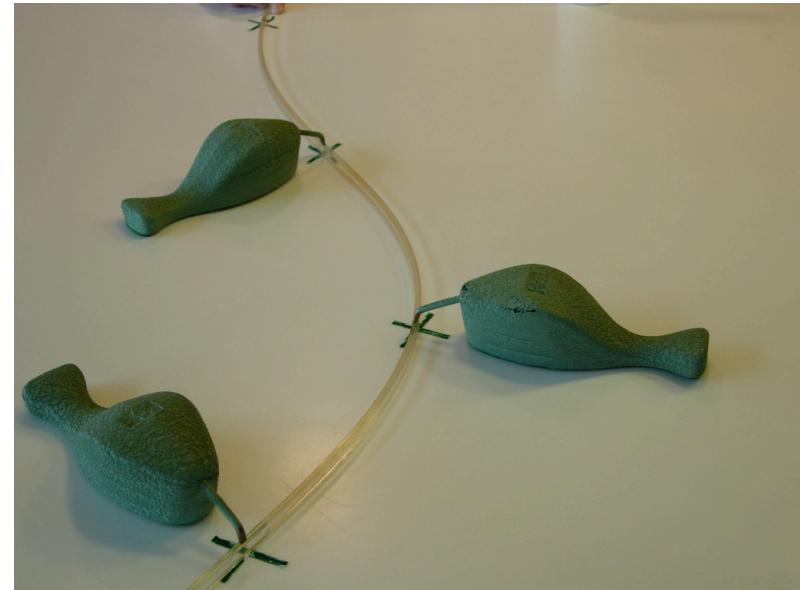
(Aldroubi et al., *Sig. Proc.*, 1992)

Includes Shannon's theory as a particular case !

Splines: variational properties

■ Spline [American Heritage Dictionary]

- “A *flexible piece of wood, hard rubber, or metal used in drawing curves.*”
- “A *wooden or metal strip; a slat.*”



■ Mathematical arguments

- First integral equation: $\forall f \in W_2^m, \quad \|\mathbf{D}^m f\|_{L_2}^2 = \|\mathbf{D}^m s_{\text{int}}\|_{L_2}^2 + \|\mathbf{D}^m(f - s_{\text{int}})\|_{L_2}^2$

f : any function that is m times differentiable (L_2 -sense)

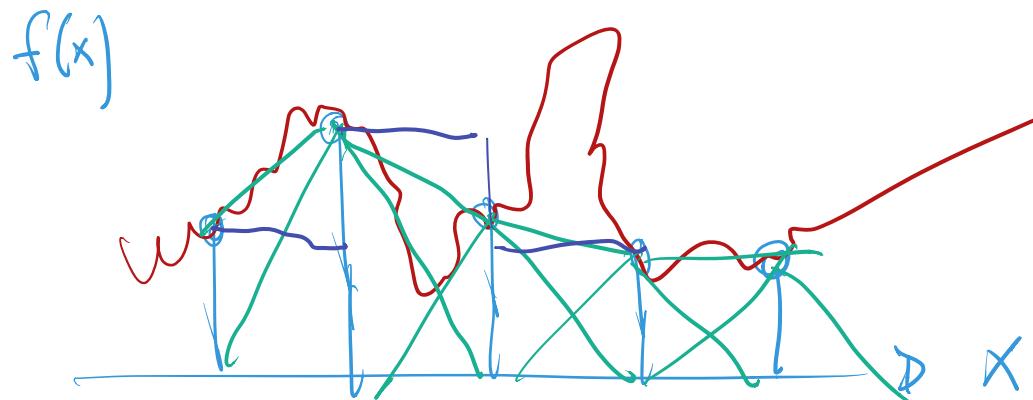
s_{int} : spline interpolant of odd degree $n = 2m - 1$ such that $f[k] = s_{\text{int}}(k)$

- Optimal interpolant [Ahlberg-Nilson, 1964]

$$f(x) = s_{\text{int}}(x) \quad \Rightarrow \quad \int_{-\infty}^{+\infty} |f^{(m)}(x)|^2 \, dx \quad \text{minimum}$$

\Rightarrow minimum-curvature property of cubic spline ($m = 2$)

Splines unify multiple perspectives



Engineer

$$f(x) = \sum f(k) \varphi(x-k)$$

Computer
Scientist

Sig Proc
Theoretician

$$f(x) = \sum f(k) \text{ sinc}(x-k)$$

Physicist

$$f(x) = \sum f(k) \text{ tri}(x-k)$$

$$f(x) = \sum f(k) \text{ rect}(x-k)$$

Mathematician

$$\text{s.t. } f(k) = f[k]$$

$$\min \| \mathcal{D}^2 f \|$$

prove Solution
exist.
and is unique!

Spline-based gradient operator

QUESTION: How to compute $\nabla f(x, y) = (f_x(x, y), f_y(x, y))$?

ANSWER: Exact computation using spline interpolation model: $f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^d} c[\mathbf{k}] \varphi(\mathbf{x} - \mathbf{k})$

■ Spline model: $f(x) = \sum_{l \in \mathbb{Z}} c[l] \beta^n(x - l)$

(1D formulation since both B-splines and derivative operators are separable)

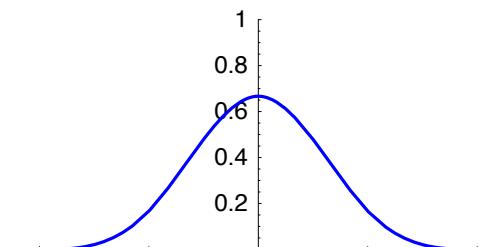
■ Differentiation:

$$\begin{aligned} f_x(x) = Df(x) &= \sum_{l \in \mathbb{Z}} c[l] D\beta^n(x - l) \\ &= \sum_{l \in \mathbb{Z}} c[l] \Delta\beta^{n-1}(x - l) \end{aligned}$$

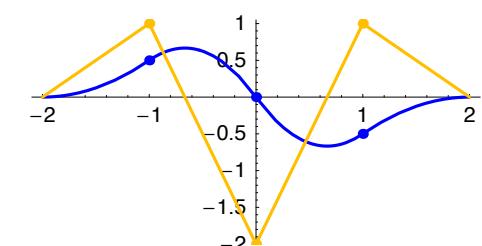
■ Discretization:

$$\begin{aligned} f_x(k) &= \sum_{l \in \mathbb{Z}} c[l] \Delta\beta^{n-1}(k - l) = (c * d_1^n)[k] \\ &= (f * h_{\text{int}}^n * d_1^n)[k] \end{aligned}$$

■ Derivative kernels: $d_1^n[k] = \Delta\beta^{n-1}(k)$



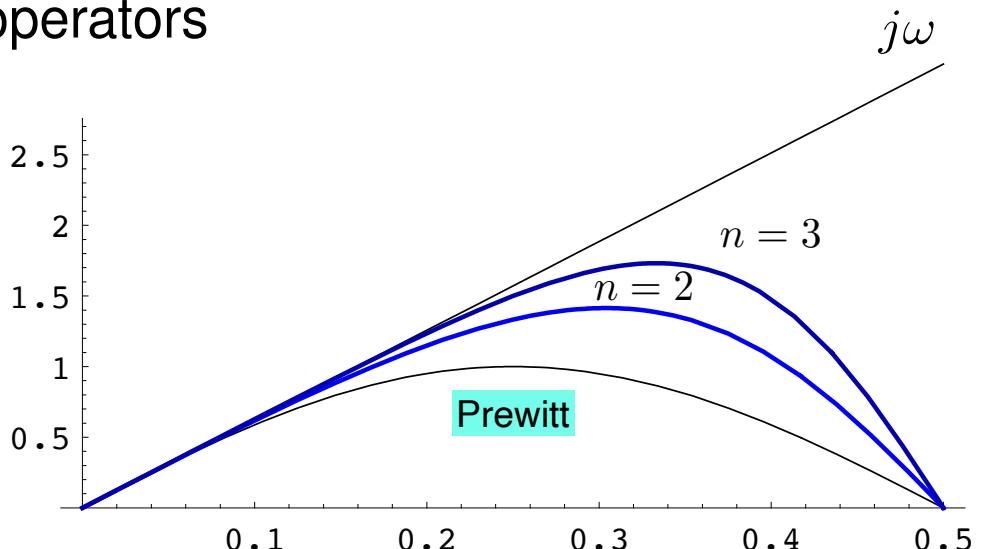
Example: cubic B-spline



Differentiation filters

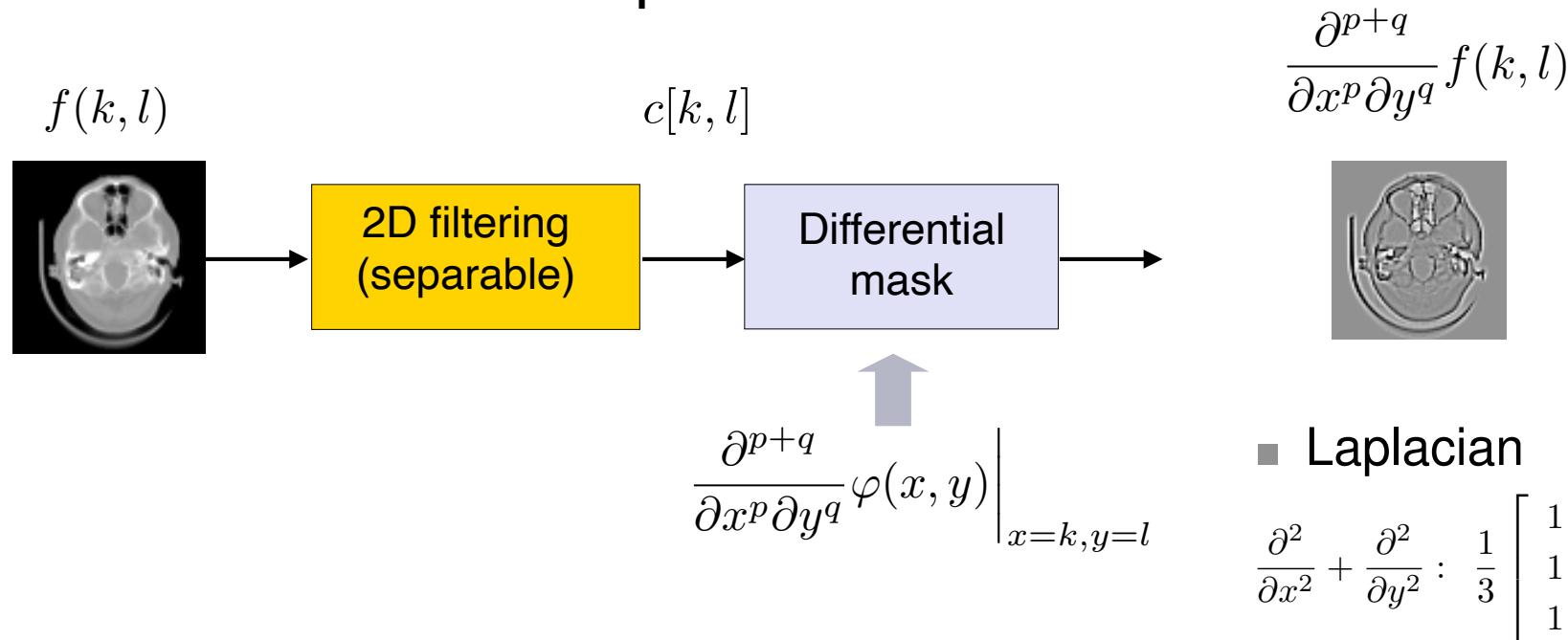
	First derivative	Second derivative
Generic	$\frac{\sum_{k \in \mathbb{Z}} \Delta \beta^{n-1}(k) z^{-k}}{B_1^n(z)}$	$\frac{\sum_{k \in \mathbb{Z}} \Delta^2 \beta^{n-2}(k) z^{-k}}{B_1^n(z)}$
$n = 1$	$(z - 1)$	N/A
$n = 2$	$\left(\frac{8}{z + 6 + z^{-1}} \right) \left(\frac{z - z^{-1}}{2} \right)$	$\left(\frac{8}{z + 6 + z^{-1}} \right) (z - 2 + z^{-1})$
$n = 3$	$\left(\frac{6}{z + 4 + z^{-1}} \right) \left(\frac{z - z^{-1}}{2} \right)$	$\left(\frac{6}{z + 4 + z^{-1}} \right) (z - 2 + z^{-1})$

Comparison of differentiation operators



Example: Cubic-spline image differentials (n=3)

■ Convolution-based implementation



■ Hessian masks

$$\frac{\partial^2}{\partial x^2} : \frac{1}{6} \begin{bmatrix} 1 & -2 & 1 \\ 4 & -8 & 4 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\frac{\partial^2}{\partial x \partial y} : \frac{1}{2 \cdot 2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial^2}{\partial y^2} : \quad \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 \\ -2 & -8 & -2 \\ 1 & 4 & 1 \end{bmatrix}$$

■ Laplacian

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} : \quad \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

■ Gradient masks

$$\frac{\partial}{\partial x} : \quad \frac{1}{6 \cdot 2} \begin{bmatrix} -1 & 0 & 1 \\ -4 & 0 & 4 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial}{\partial y} : \quad \frac{1}{6 \cdot 2} \begin{bmatrix} -1 & -4 & -1 \\ 0 & 0 & 0 \\ 1 & 4 & 1 \end{bmatrix}$$

Why B-splines ?

- Symmetry; compact support; explicit piecewise-polynomial form; positivity
- Efficient interpolation algorithms (recursive filtering)
- Well-suited for explicit computation of differential operators
Differentiation \Rightarrow degree reduction & finite differences
- Explicit control of image smoothness
- Generality: transition from piecewise-constant ($n = 0$) to bandlimited model ($n \rightarrow +\infty$)
- Shortest functions that reproduce polynomials of degree n :
$$\exists a_m[k], \quad x^m = \sum_{k \in \mathbb{Z}} a_m[k] \beta^n(x - k), \quad (m = 0, \dots, n)$$

In particular: $\sum_{k \in \mathbb{Z}} \beta^n(x - k) = 1 \quad (\text{partition of unity})$
- Good approximation power
 \Rightarrow Best interpolation quality for a given computational budget!

7.3 FROM SPLINES TO WAVELETS

- Multiresolution: motivation
- Notation and conventions
- Haar transform revisited
- Image pyramids
- Error (or Laplacian) pyramid
- From pyramids to wavelets

Multiresolution: motivation

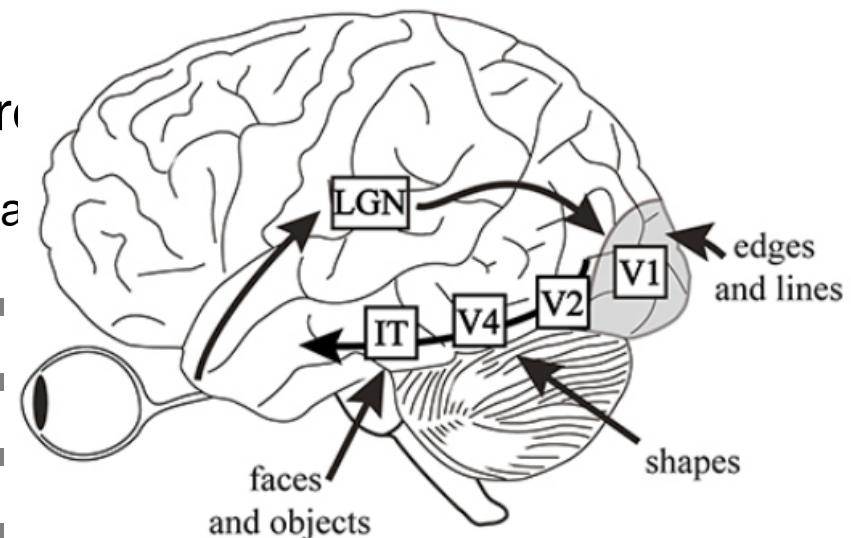
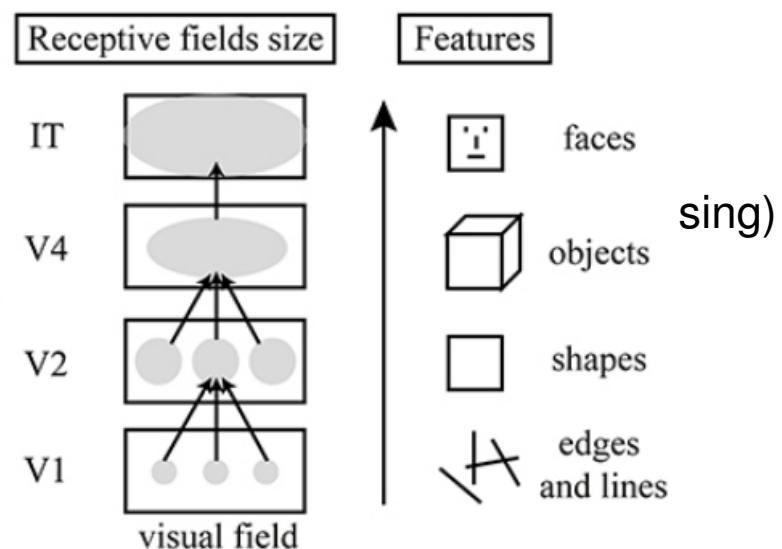
Why should one be stuck with a *fixed-resolution* image format?

■ Multiscale processing

- Adapting resolution: coarse-to-fine or multigrid iteration strategies
- Speed: less computation + faster convergence
- Robustness
- Inspired by the human visual system
- Old idea (70's, early 80's) [Rosenfeld, Burt & Adelson]

⇒ Multiscale implementation of most iterative IP algorithms

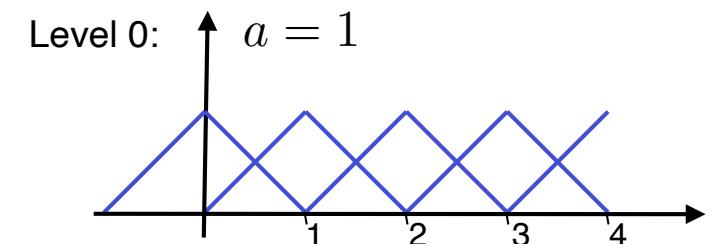
■ Multire Compa



Notation and conventions

■ Basic signal space

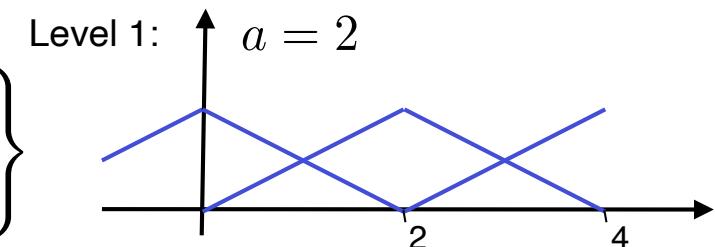
$$V_0 = \left\{ s(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x - k), c \in \ell_2 \right\}$$



■ Fine-to-coarse sequence of subspaces

$$V_0 \rightarrow V_1 \rightarrow \dots \rightarrow V_i$$

$$V_i = \left\{ s_i(x) = \sum_{k \in \mathbb{Z}} c_i[k] \varphi \left(\frac{x - 2^i k}{2^i} \right), c_i \in \ell_2 \right\}$$



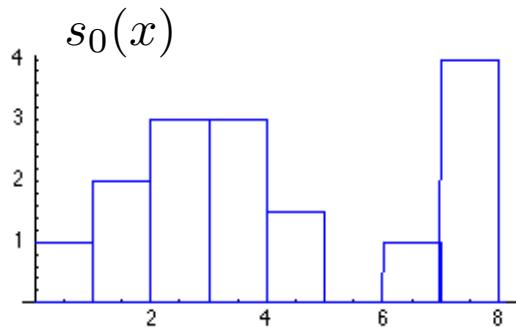
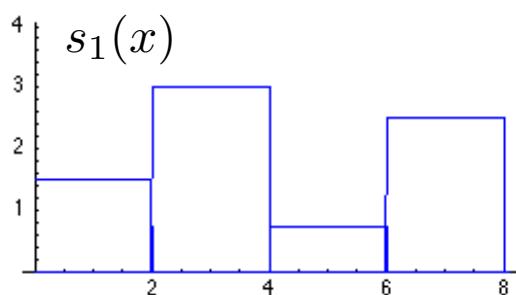
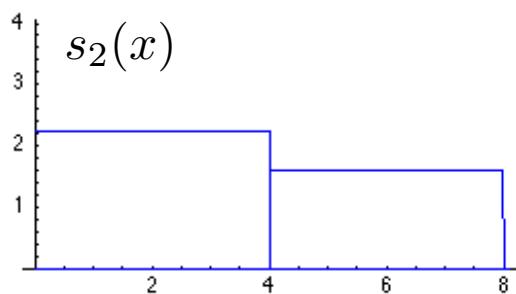
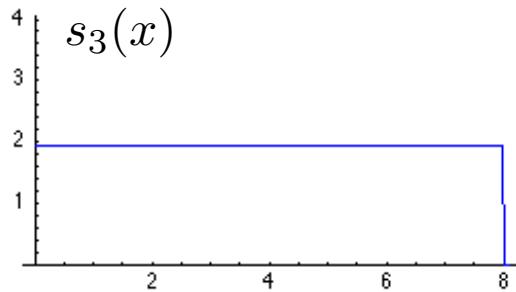
■ Basis functions at resolution $a = 2^i$

$$\varphi_{i,k} = \varphi(x/2^i - k)$$

Scale index i \Rightarrow dilation by $a = 2^i$ (powers of two!)

Translation index k \Rightarrow shift by $b = 2^i \cdot k$

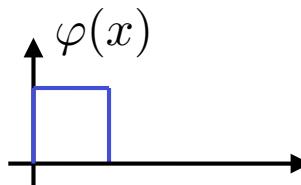
Wavelets: Haar transform revisited



Signal representation

$$s_0(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x - k)$$

Scaling function



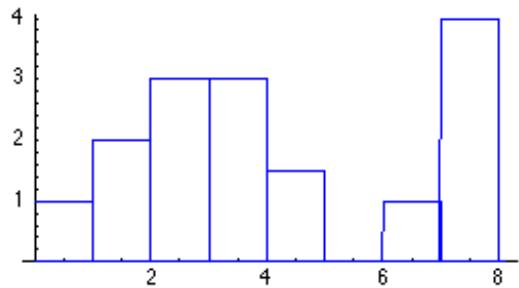
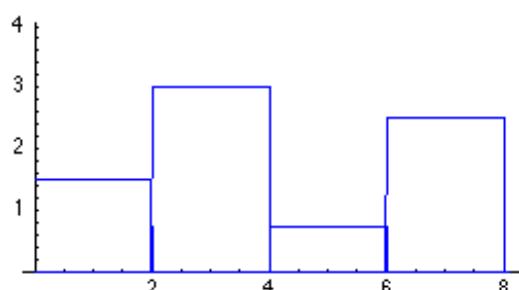
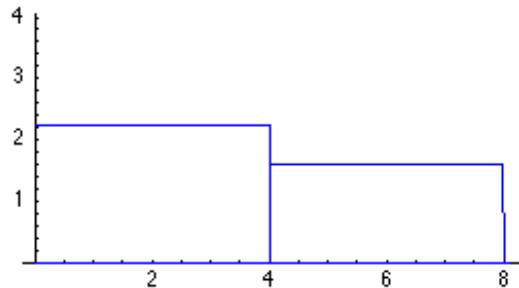
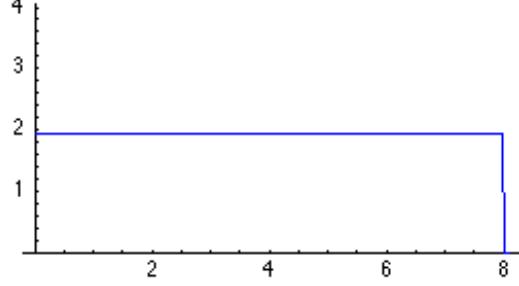
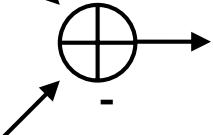
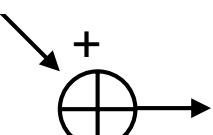
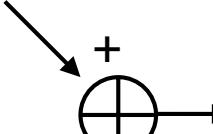
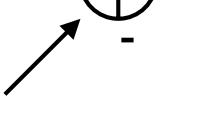
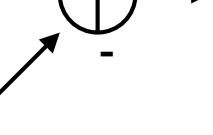
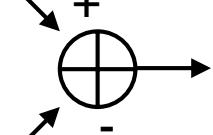
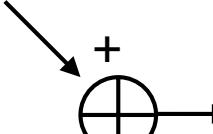
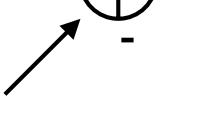
Multiscale signal representation

$$s_i(x) = \sum_{k \in \mathbb{Z}} c_i[k] \varphi_{i,k}(x)$$

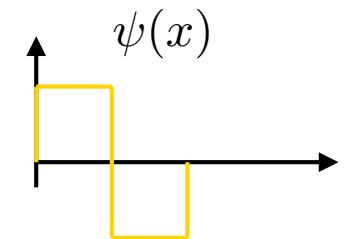
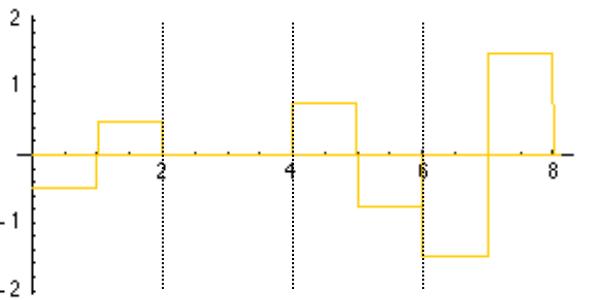
Multiscale basis functions

$$\varphi_{i,k}(x) = \varphi\left(\frac{x - 2^i k}{2^i}\right)$$

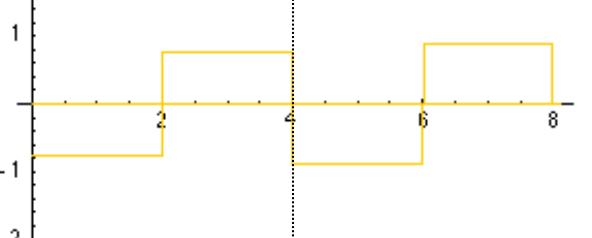
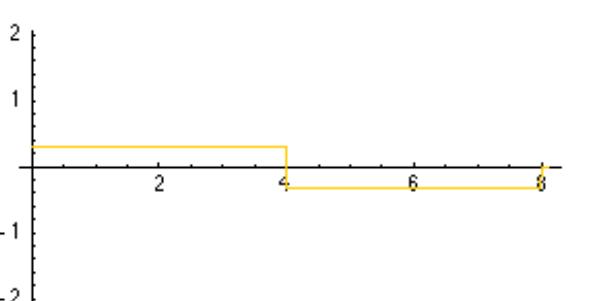
Wavelets: Haar transform revisited



Wavelet:



$$r_i(x) = s_{i-1}(x) - s_i(x)$$



Wavelets: Haar transform revisited

$$r_1(x) = \sum_k d_1[k] \psi_{1,k}$$

+

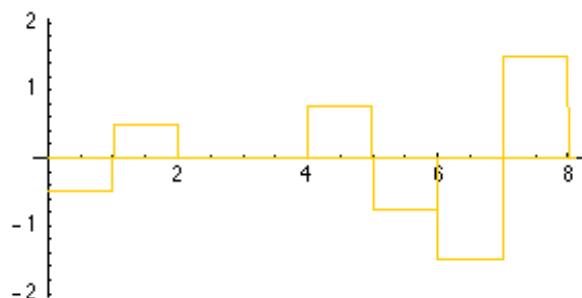
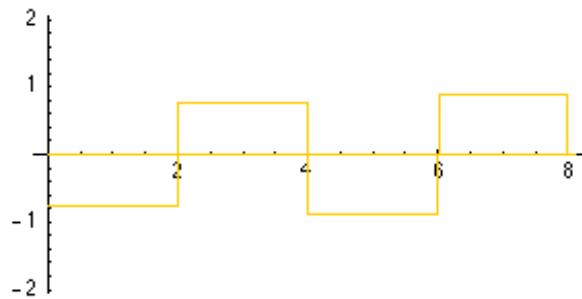
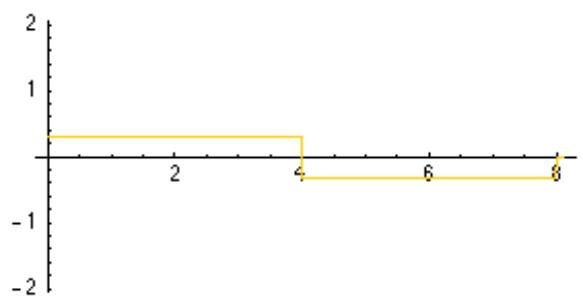
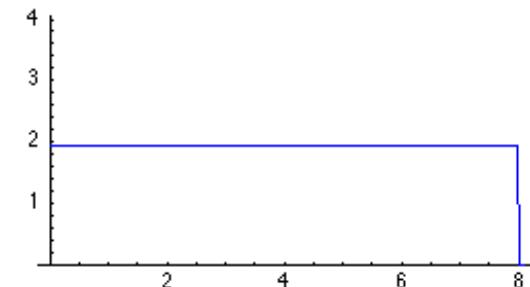
$$r_2(x) = \sum_k d_2[k] \psi_{2,k}$$

+

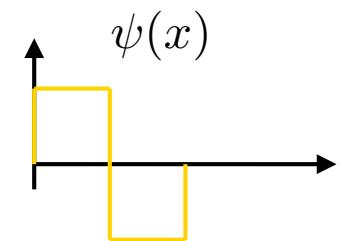
$$r_3(x) = \sum_k d_3[k] \psi_{3,k}$$

+

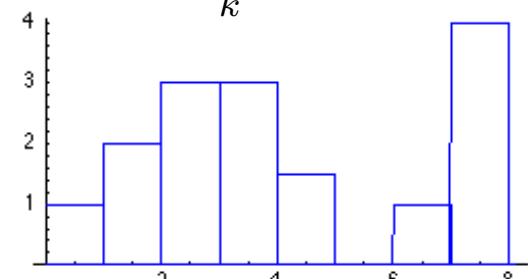
$$s_3(x) = \sum_k c_3[k] \varphi_{3,k}$$



Wavelet:



$$s(x) = \sum_k c[k] \varphi(x - k)$$



=

Basic ingredients

- Generic representation: $s_i = \sum_k c_i[k] \varphi_{i,k}$
⇒ vector space V_i (integer shift-invariant)
- Two-scale relation ⇒ sequence of *nested* subspaces
$$L_2(\mathbb{R}) \supset \cdots \supset V_0 \supset V_1 \supset \cdots \supset V_i \supset \cdots \supset \{0\}$$
- Sequence of minimum-error approximations: $s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_i$
⇒ s_i is the *orthogonal projection* of s_0 onto V_i
- Decoupling between error and approximation
⇒ *orthogonality* of the residual spaces (i.e., $\forall k \in \mathbb{Z}$, $\langle \varphi(\cdot), \psi(\cdot - k) \rangle = 0$)
- Wavelet decomposition: compact representation of the residues

$$r_i = s_{i-1} - s_i = \sum_{k \in \mathbb{Z}} d_i[k] \psi_{i,k} \in W_i$$

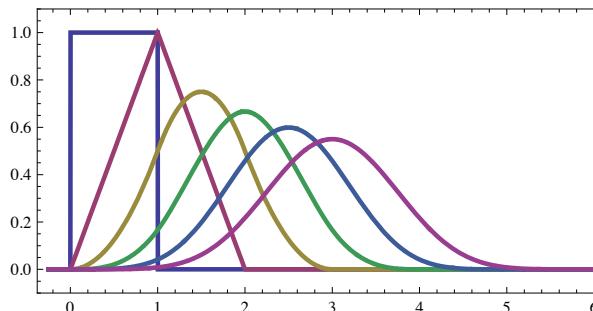
m-scale relation

- Causal B-spline of degree n

$$\beta_+^n(x) = \beta^n(x - \frac{n+1}{2})$$

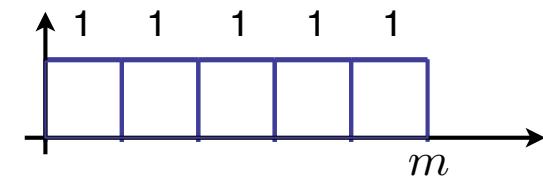
- B-spline dilated by an integer factor m

$$\beta_+^n(x/m) = \sum_{k \in \mathbb{Z}} h_m^n[k] \beta_+^n(x - k) \quad \text{with} \quad H_m^n(z) = \frac{1}{m^n} \left(\sum_{k=0}^{m-1} z^{-k} \right)^{n+1}$$



- Example 1: Piecewise-constant case ($n = 0, m$)

$$H_m^0(z) = 1 + z^{-1} + \cdots + z^{-(m-1)} \quad (\text{moving-sum filter})$$



- Example 2: piecewise-linear splines ($m = 2, n = 1$)

$$H_2^1(z) = \frac{1}{2}(z + 2 + z^{-1})$$

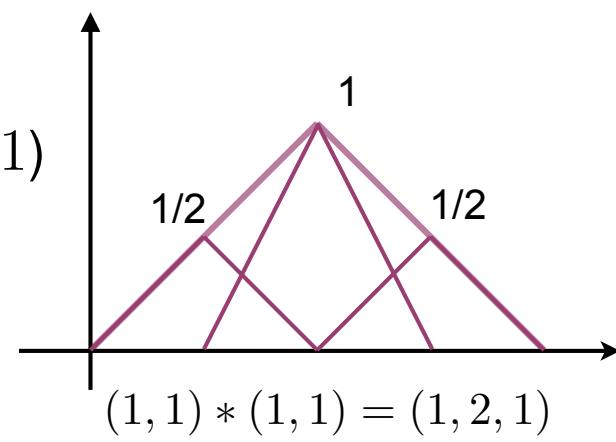


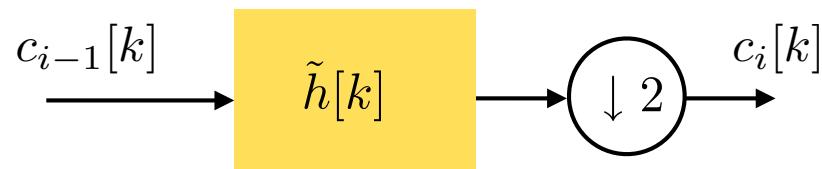
Image pyramids

■ Successive approximations at dyadic scales

$$V_i = \left\{ s_i(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^d} c_i[\mathbf{k}] \varphi_{2^i}(\mathbf{x} - 2^i \mathbf{k}) : c_i[\mathbf{k}] \in \ell_2(\mathbb{Z}^d) \right\}$$

Rescaled basis function: $\varphi_{2^i}(\mathbf{x}) \triangleq \prod_{k=1}^d \beta^n \left(\frac{x_k}{2^i} \right)$

■ Repeated, separable application of REDUCE operator



■ Optimal prefilter for minimum L_2 -norm approximation

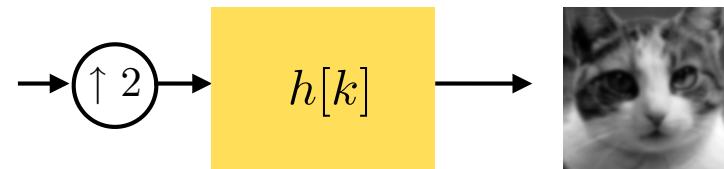
\tilde{h} : separable, uniquely specified given the scaling function $\varphi(x)$

Haar: 2 point average; otherwise typically IIR

Error (or Laplacian) pyramid

REDUCE

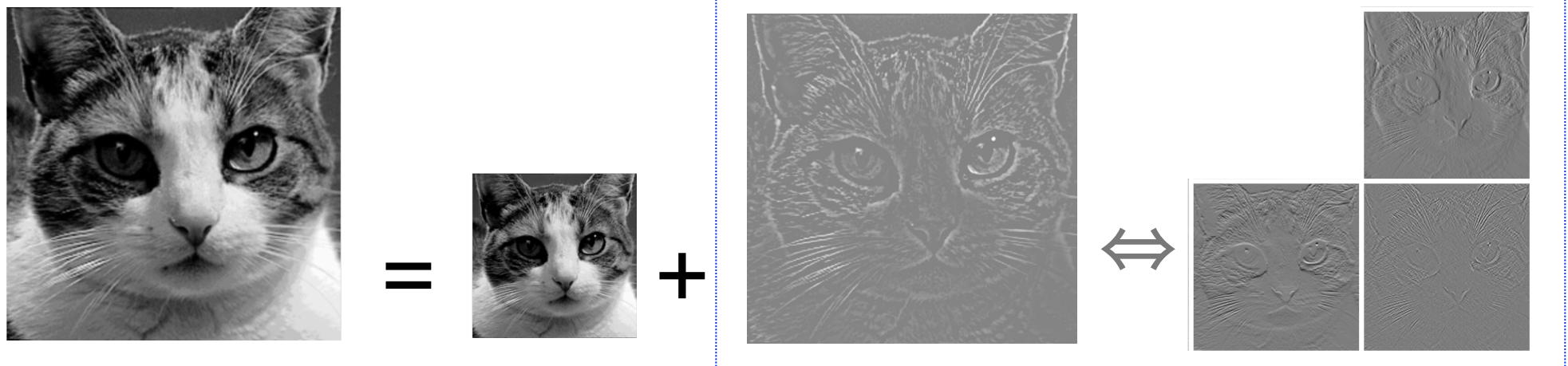
EXPAND



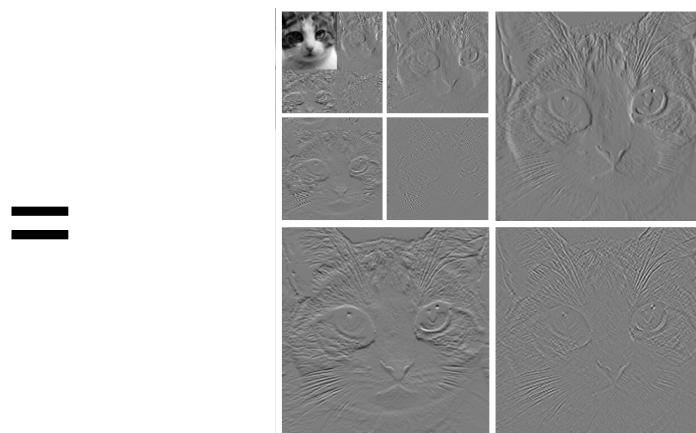
Least-squares pyramid

Error pyramid

And the connection with wavelets



and iterate.... you get the wavelet transform:

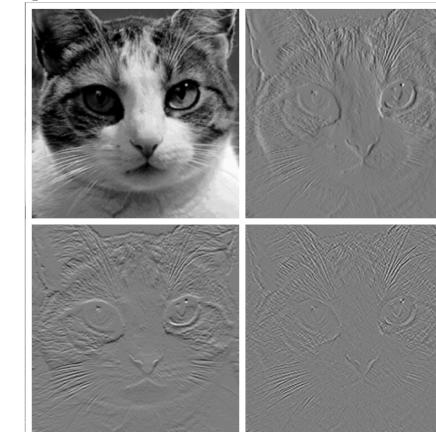


S.G. Mallat, "A theory of multiresolution signal decomposition: the wavelet representation," *IEEE Trans. Pattern Anal. Machine Intell.*, 11 (7), pp. 674-693, 1989

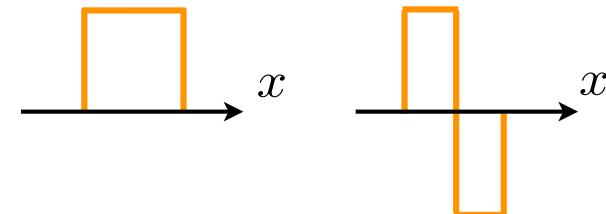
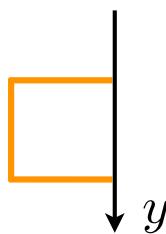
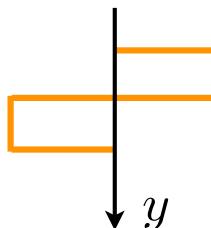
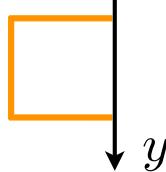
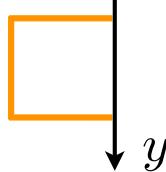
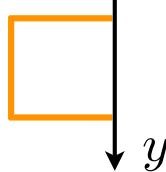
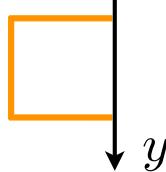
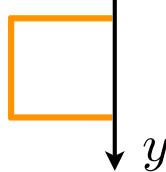
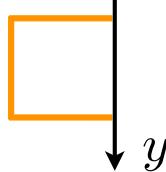
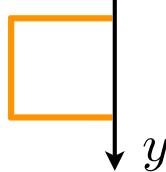
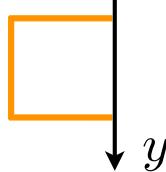
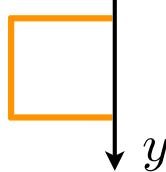
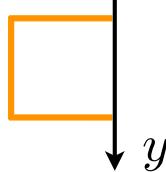
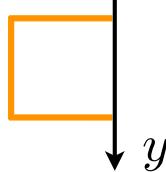
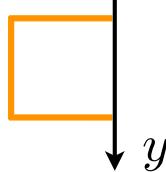
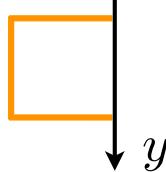
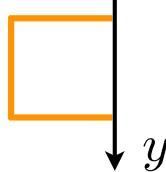
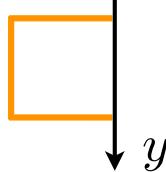
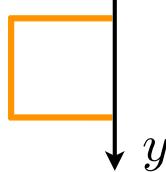
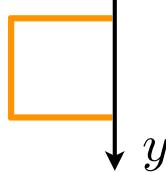
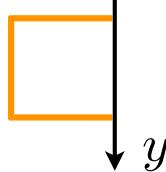
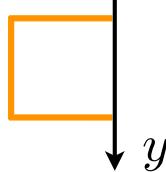
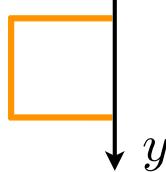
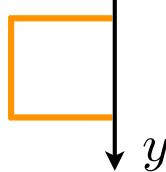
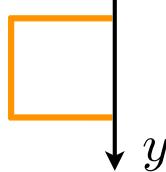
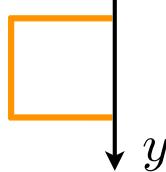
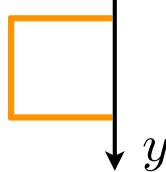
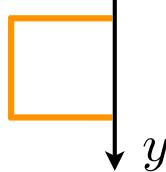
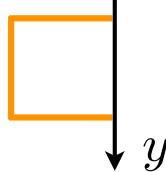
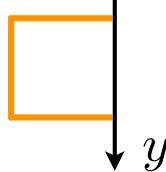
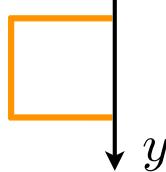
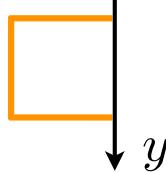
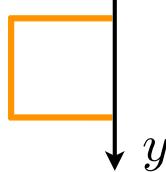
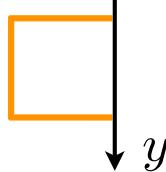
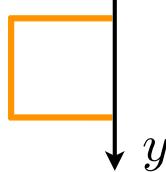
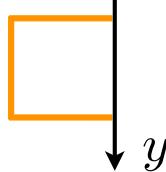
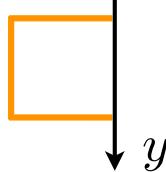
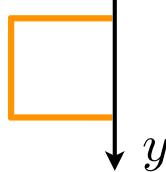
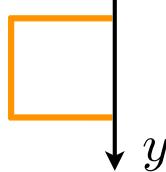
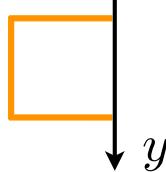
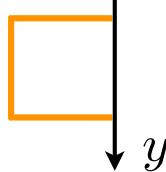
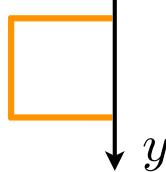
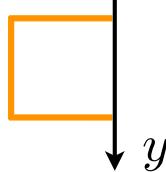
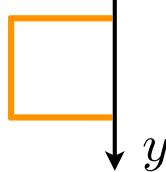
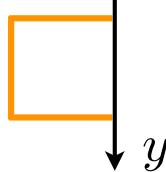
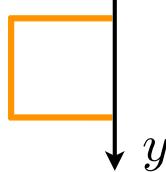
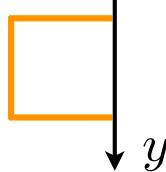
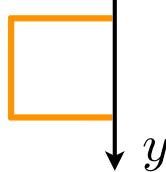
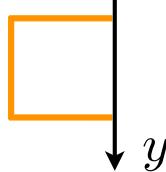
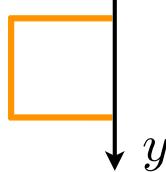
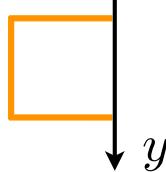
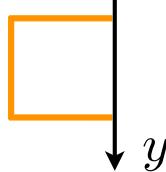
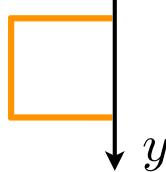
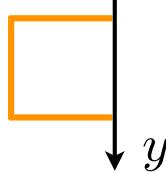
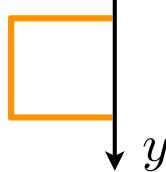
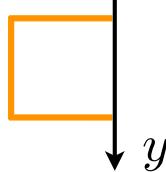
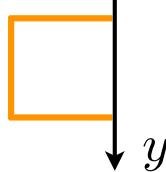
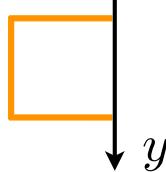
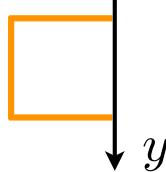
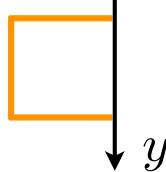
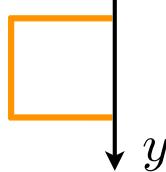
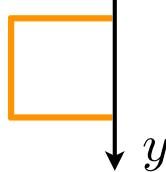
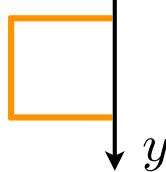
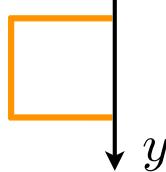
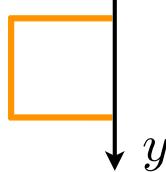
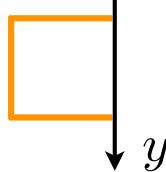
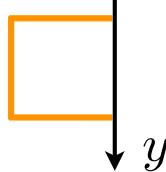
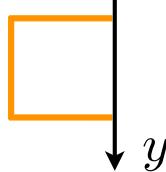
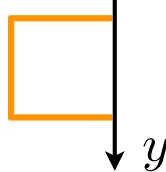
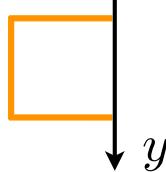
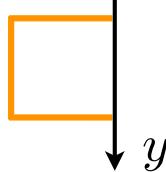
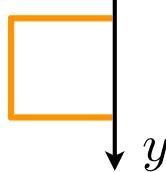
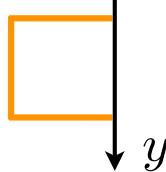
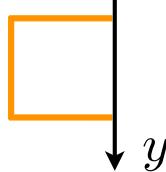
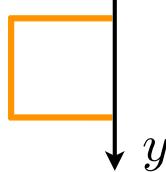
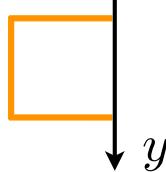
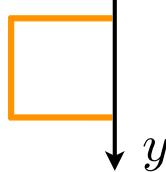
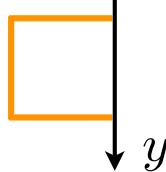
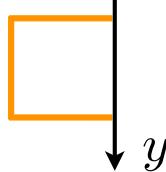
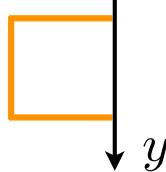
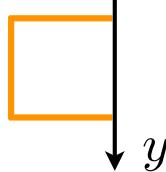
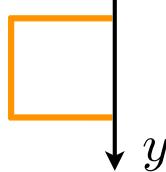
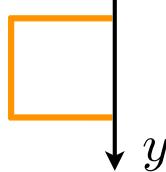
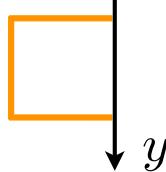
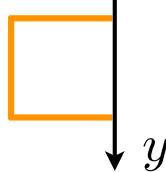
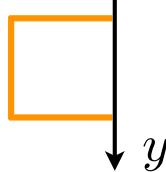
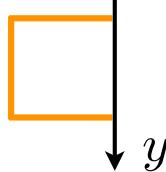
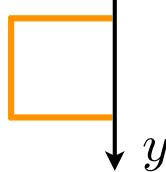
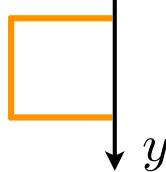
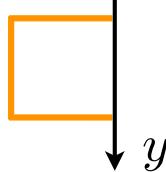
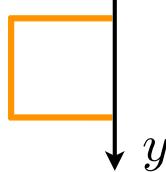
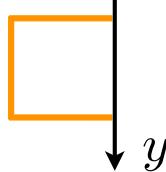
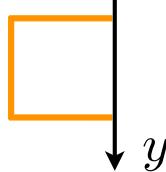
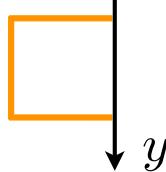
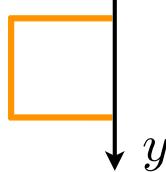
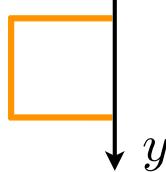
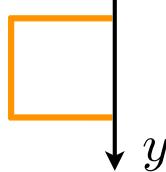
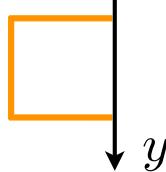
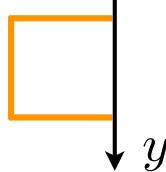
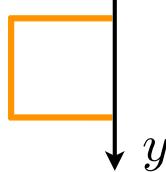
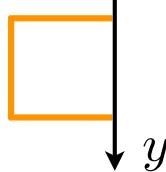
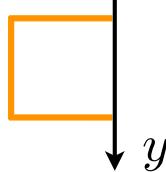
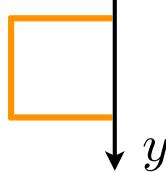
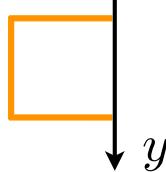
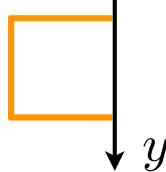
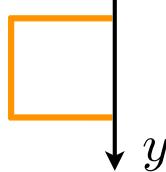
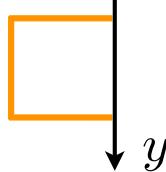
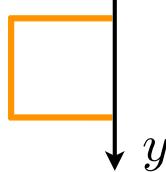
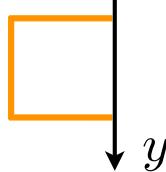
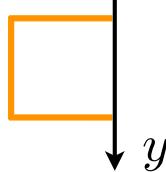
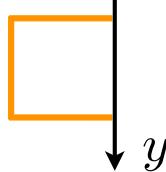
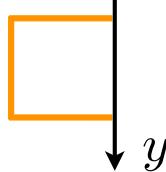
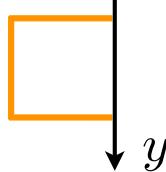
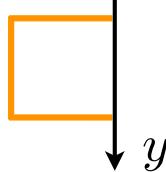
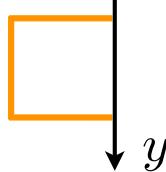
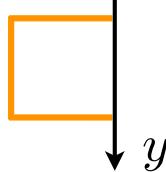
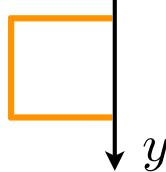
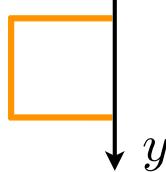
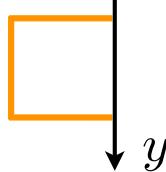
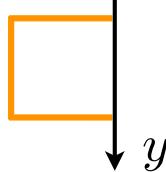
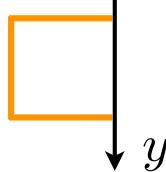
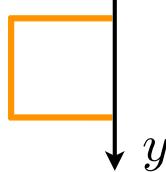
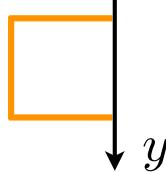
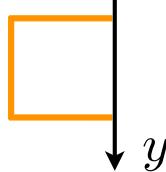
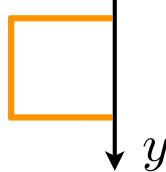
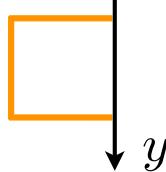
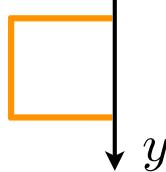
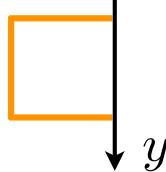
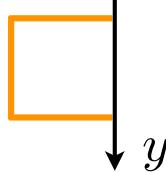
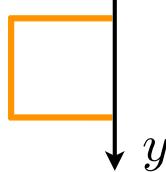
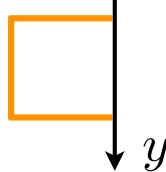
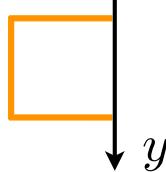
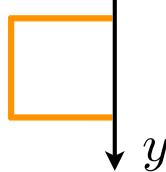
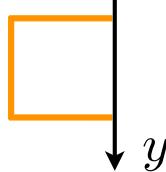
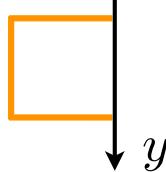
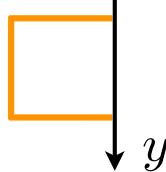
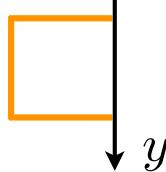
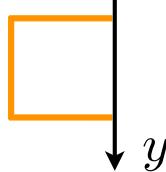
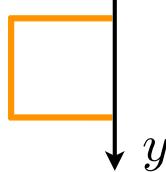
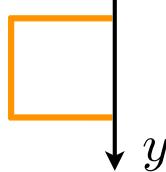
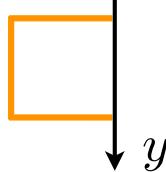
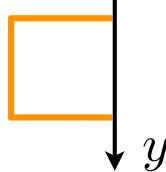
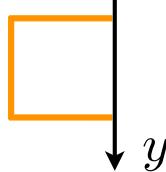
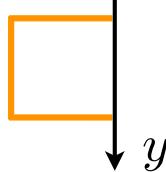
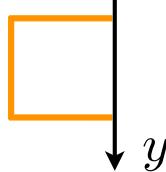
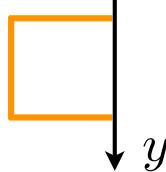
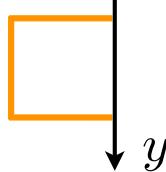
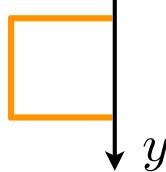
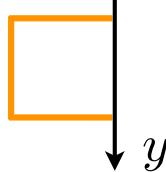
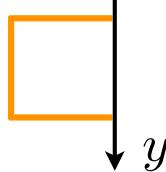
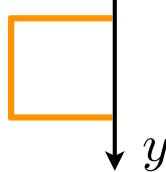
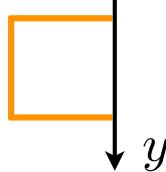
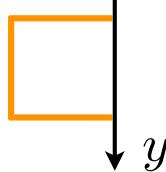
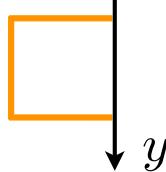
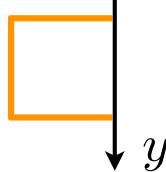
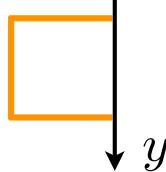
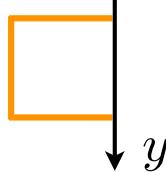
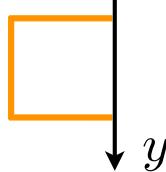
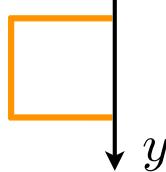
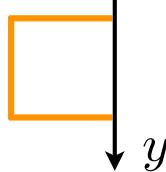
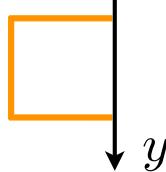
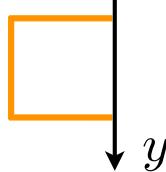
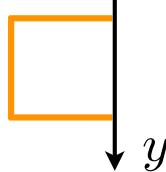
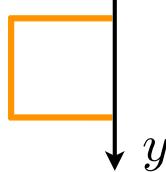
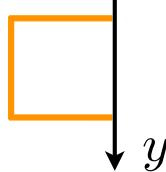
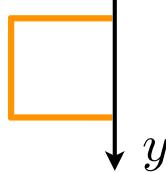
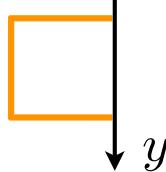
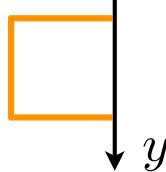
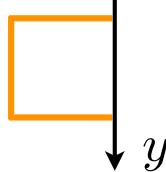
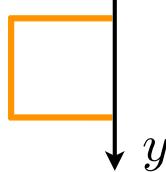
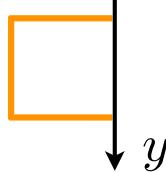
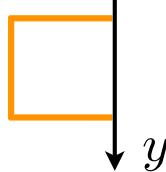
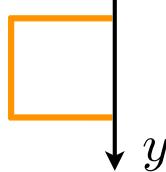
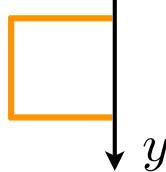
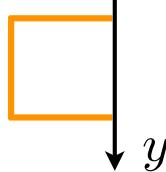
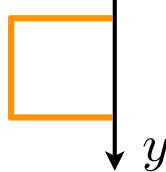
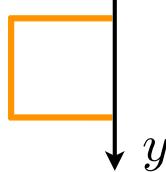
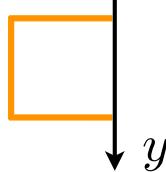
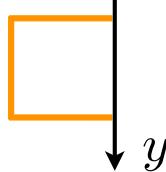
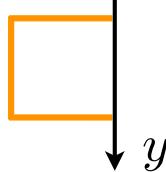
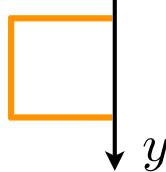
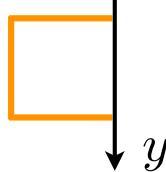
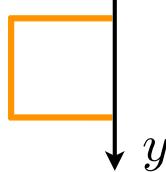
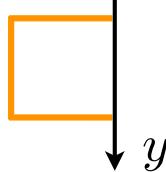
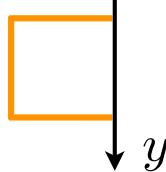
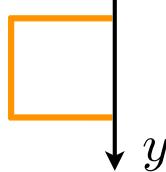
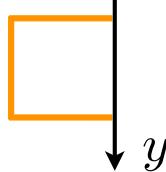
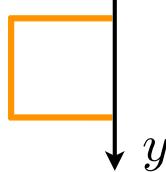
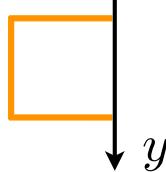
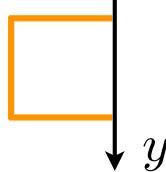
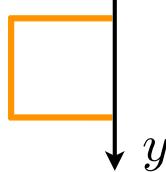
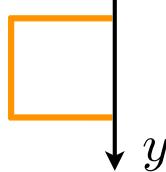
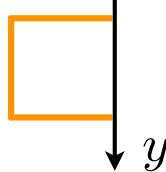
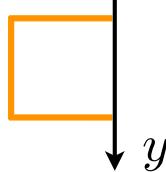
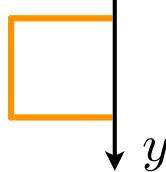
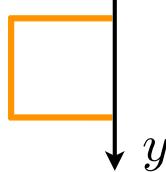
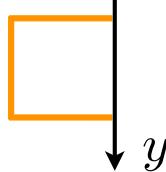
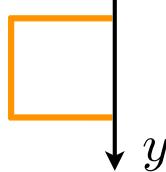
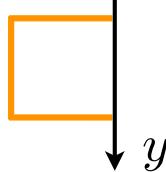
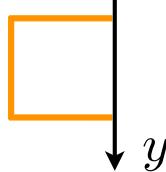
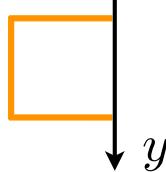
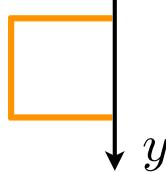
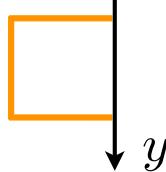
2D basis functions and Haar expansion

$$f(x, y) = \sum_{i, \mathbf{k}} w_{i, \mathbf{k}} \psi_{i, \mathbf{k}}(x, y)$$

Expansion coefficients



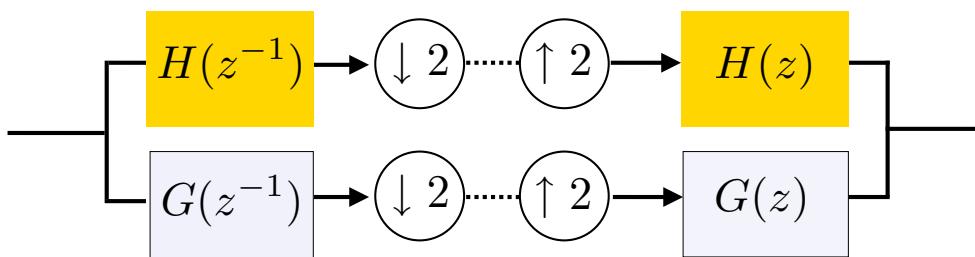
Tensor-product basis functions



Haar: filterbank formulation

■ Basic principle

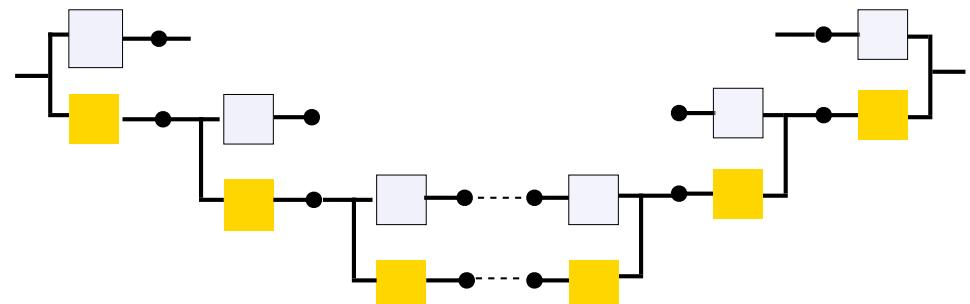
■ Perfect reconstruction filterbank



Lowpass filter: $H(z) = \frac{1}{\sqrt{2}}(1 + z^{-1})$

Highpass filter: $G(z) = \frac{1}{\sqrt{2}}(1 - z^{-1})$

■ Tree-structured filterbank algorithm



7.4 SUMMARY

- A continuous/discrete image representation involves shifted basis functions $\varphi(\mathbf{x} - \mathbf{k})$ centered on the pixels. There is exactly one coefficient $c[\mathbf{k}]$ per pixel location.
- The generating function $\varphi(\mathbf{x})$ may—or may not—have the interpolation property; in the latter case, image interpolation involves a digital prefiltering step.
- Interpolation is required for performing geometric transformations such as rotation, scaling or warping.
- The B-splines are a very useful family of generating functions. They are easy to manipulate and have many optimal properties (short support, etc...).
- A multiscale image representation (or pyramid) is a series of fine-to-coarse approximations using basis functions of increasing sizes (dyadic scale progression).
- The pyramid is constructed simply by iterative lowpass filtering and down-sampling.
- The residues in a LS pyramid are orthogonal to the next coarser image approximation. They can be represented concisely using wavelets (one-to-one representation).

References

- S.G. Mallat, “A theory of multiresolution signal decomposition: The wavelet representation, *IEEE Trans. Pattern Anal. Machine Intell.*, vol. 11, no. 7, pp. 674-693, 1989.
- S. Mallat, *A wavelet tour of signal processing*. San Diego: Academic Press, 1998.
- M. Unser, A. Aldroubi and M. Eden, “B-spline signal processing: Part I—Theory,” *IEEE Trans. Signal Processing*, vol. 41, no. 2, pp. 821-833, 1993.
- M. Unser, A. Aldroubi and M. Eden, “B-spline signal processing: Part II—Efficient design and applications,” *IEEE Trans. Signal Processing*, vol. 41, no. 2, pp. 834-848, 1993.
- M. Unser, “Splines: A perfect fit for signal and image processing,” *IEEE Signal Processing Magazine*, vol. 16, no. 6, pp. 22-38, November 1999.